Name: Enrolment No:		UPES UNIVERSITY OF TOMORROW				
Program: B Tech Mechanical Engineering T		Semester: Time: Max. Marks:	VI 03 hrs. 100			
	clear explanations where necessary.	and an annuanciata				
Use diagrams or sketches to support your answers when appropriate. SECTION A (5Qx4M=20Marks)						
S. No.		,	Marks	СО		
Q 1	Enumerate four key attributes of a well-designed product.		4	CO1		
Q 2	 i. Identify the primary purpose of development from the following options a) Mass production of final products b) Testing and validating design concept c) Recycling of waste materials d) Marketing and advertising campaigns ii. Identify the additive manufacturing plaser beam to selectively melt metal pow a) Electron Beam Melting (EBM) b) Selective Laser Sintering (SLS) c) Direct Metal Laser Sintering (DMLS) d) Stereolithography (SLA) iii. Rapid prototyping is often used development? a) Final production b) Testing and validation c) Marketing and sales d) Distribution and logistics 	s process that employs a focus der, layer by layer:	ed 1x4	CO1		

	iv. Which additive manufacturing method is commonly used for		
	producing ceramic components with high precision and intricate geometries?		
	a) Electron Beam Melting (EBM)		
	b) Digital Light Processing (DLP)		
	c) Selective Laser Melting (SLM)		
	d) Powder Bed Fusion (PBF)		
Q 3	Explain the similarities and differences between rapid tooling and rapid prototyping	4	CO1
Q 4	Enumerate the materials appropriate for the FDM process.	4 CO2	
Q 5	Discuss four important process parameters of Directed Energy Deposition (DED).	4	CO1
	SECTION B		
	(4Qx10M= 40 Marks)		
Q 6	Discuss how a poorly defined design problem can hinder the design		
	process and lead to suboptimal outcomes. Provide examples to support your analysis.	10	CO4
Q 7	Explain the working principle fused deposition modelling and explain briefly the important process parameters.		CO3
Q 8	Discuss in detail the various post processing techniques and characterization techniques used in additive manufacturing.		CO3
Q 9	Discuss the drawbacks and practical applications of the Solid Ground	10	CO2
	Curing (SGC) system in additive manufacturing.	10	CO2
	SECTION-C (2Qx20M=40 Marks)		
Q 10	Discuss the significance of process parameters in ultrasonic consolidation (UC) and propose an optimized set of parameters for bonding dissimilar metal foils. Consider factors such as ultrasonic frequency, vibration amplitude, welding pressure, and dwell time. Justify your parameter selection based on their impact on bond strength, microstructure, and potential challenges associated with bonding dissimilar metals. Additionally, propose strategies for mitigating any potential defects or inconsistencies in the bonding process.	20	CO4
Q 11	How would you design a custom implant for a patient using Ballistic Particle Manufacturing (BPM), considering factors such as material selection, design optimization for biocompatibility and mechanical strength, and post-processing requirements? Justify your design choices	20	CO4

based on the capabilities and limitations of BPM and propose a plan for validating the implant's performance in vivo.	
Or	
Design a comprehensive workflow for utilizing LENS in the production of a complex aerospace component, such as a turbine blade. Consider factors such as material selection, build orientation optimization, post- curing techniques, and quality control measures. Justify each step of your workflow based on the advantages and limitations of LENS and propose strategies for ensuring the final component meets industry standards for strength, durability, and dimensional accuracy.	