Name:

Course:

S. No.

Q 1

Q 2

Q 3

Q 4

Q 5

Program:

Enrolment No:

CO

CO2

CO1

CO2

CO2

CO1

UPES End Semester Examination, May 2024 CAD/CAM Semester: VI 03 hrs. **Mechatronics Engineering** Time: Course Code: MEPD 3018 Max. Marks: 100 **Instructions: SECTION A** (5Qx4M=20Marks) Marks List out and explain basic components of a CNC system 4 Specify the main objective of CAM 4 Explain why the computer is necessary in the use of the finite element 4 method Explain the functions served by a preprocessor in FEM 4 Write down the advantages of numerical control over manual control 4 **SECTION B**

(4Qx10M= 40 Marks)				
Q 6	Define Concurrent Engineering with a suitable schematic diagram and explain how it influences product design.	10	CO1	
Q 7	(a) Schematically show the different forms of numerical control, viz., open-loop and closed-loop control systems.(b) List out Numerical Control Procedure.	5+5	C01	
Q 8	Classify NC based on Motion Control and explain them.	10	CO2	
Q 9	 (a) Identify the symbols under bracket which are generally used in NC programming- (N), (G), (X), (Y), (Z), (S), (F), (T), (M) (b) Identify the role of a NC programmer and list them. 	5+5	CO3	
SECTION-C				
(2Qx20M=40 Marks)				
Q 10	(a) Explain with an example various step in the modern design process.(b) Explain the solution methodology of Anti-Aliasing in computer graphics.(c) Explain why we carry out meshing in FEA with a suitable scheme and examples?	7+5+8	CO2	

Q 11	A cube of 10-unit length has one of its corners at the origin $(0, 0, 0)$ and the three edges along the three principal axes. If the cube is to be rotated about the Z-axis by an angle of 30° in the counterclockwise direction, calculate the new position of the cube.		
	or		
	For the spring assemblage shown in Figure, obtain (a) the global stiffness matrix, (b) the displacements of nodes 2 and 4, (c) the reaction forces at nodes 1 and 2, and (d) the forces in spring 2 . A force of 200 N is applied at node 4 in the x direction. The spring constants are given in the figure. Nodes 1 and 2 are fixed.	20 M	CO3
	$k_1 = 45 \text{ N/mm}$ $k_2 = 90 \text{N/mm}$ $k_3 = 60 \text{N/mm}$ $1 \longrightarrow 3 \longrightarrow 4 P = 200 \text{ N}$ $1 \longrightarrow 3 \longrightarrow $		