Name:

Enrolment No:

UPES

End Semester Examination, May 2024

Course: Design and analysis of algorithm

Program: B.Tech MECHATRONICS

Course Code: MECH3036_3

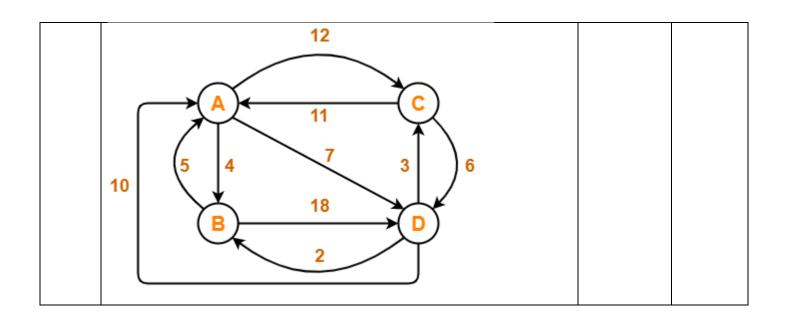
Semester: VI

Time : 03 hrs.

Max. Marks: 100

Instructions: Use diagrams to support the explanation where possible.

SECTION A (50x4M=20Marks)


S. No.		Marks	CO
Q 1	Discuss the algorithm steps for selection sort.	4	CO2
Q 2	Discuss the measures to analyze the performance of an algorithm.	4	CO1
Q 3	Explain in brief the divide and conquer approach for problem solving with a suitable example.	4	CO2
Q 4	Find the time complexity of following code in best case and worst case: void fun(int n) $ \{ & \text{ if } (n < 5) \\ & \text{ printf("Hello");} \\ & \text{ else } \{ & \text{ for (int } i = 0; i < n; i++) \{ \\ & \text{ printf("\%d", i);} \\ & \} \\ & \} \\ \} $	4	CO1
Q 5	Consider the process of "Fill the bath with water" in following steps: (1) Turn on the hot and cold taps. (2) Is it too hot or cold? If it is, go to step 3, otherwise go to step 4. (3) Adjust the hot and cold taps and go back to step 2. (4) Wait for 2 minutes. (5) Is the bath full? If it is, go to step 7, otherwise go to step 6. (6) Go back to step 4. (7) Turn off the hot and cold taps.	4	CO1
	Draw a flow chart to represent the scenario. SECTION B (Attempt any 4 questions)		

SECTION B (Attempt any 4 questions)

(4Qx10M = 40 Marks)

Q 6	Discuss the quick sort algorithm with a suitable example. Also discuss the time complexity in different cases.						10	CO2	
Q7		Given the jobs, their deadlines and associated profits as shown-							
	Jobs	J1	J2	J 3	J4	J5	J 6		
	Deadlines	5	3	3	2	4	2		
	Profits	200	180	190	300	120	100	10	CO3
		ne optima the jobs c the maxi	l schedu omplete mum ea	le that g d in the rned pro	optimal ofit?	schedul	e?		
Q8	Construct the n Prim's Algorith	24 5	28	14	8	16	3	10	CO3
Q9	Discuss the solution for 4-queens problem using branch and bound approach.						10	CO4	
Q10	Using Dijkstra' vertex 'S' to re						e e	10	CO3

			C (Attempt any Ox20M=40 Mar			
Q 11	Find out shortest path between all pairs of nodes of the graph given below:					CO3
Q12	A thief enters a hof 5 kg into his ba following weights either takes the it					
	Mirror	2	3		20	CO3
	Silver nugget	3	4			
	Painting	4	5			
	Vase	5	6			
Q13	Solve Travelling Salesman Problem using Branch and Bound Algorithm in the following graph-					CO4

