Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May 2024

Course: Chemical Process Safety (HSFS 3008) Program: BTech FSE Course Code: HSFS 3008 Semester: VI Time : 03 hrs. Max. Marks: 100

Instructions: Students are advised to answer questions sequentially and start each answer of a new sheet of paper.
SECTION A

	(5Qx4M=20Marks)		
S. No.		Marks	СО
Q1	Give full form of: a) ALOHA b) FMECA c) ERPG d) IPL	4	CO1
Q2	What is bow-tie analysis and what is its relationship with FTA and ETA?	4	CO2
Q3	What is Mean Time Between Failure (MTBF)? Provide the mathematical formula used to calculate the failure probability of a system with components arranged in parallel.	4	CO3
Q4	Can a BLEVE occur without a fireball, and what are the practical implications of such a scenario? Provide examples from real-world situations where a BLEVE may happen without a fireball.	4	CO2
Q5	What are atmospheric stability criteria, and how are they defined?	4	CO3
	SECTION B (4Qx10M= 40 Marks)		
Q6	Explain the use of 5-Why analysis as tools for root cause analysis. Highlight its unique strengths and weaknesses. Provide an example of an organizational issue that could be addressed using the method.	10	CO4
Q7	Explain the Hazard and Operability (HAZOP) study methodology, covering its concept and purpose, procedural steps, guide-words and parameters with examples, risk assessment and ranking process, and the role of the HAZOP team.	10	CO3
Q8	What are the limitations of using a risk matrix in risk management? Discuss at least three potential drawbacks.	10	C01
Q9	The water flow to a chemical reactor cooling coil is controlled by the system as shown in following figure. The flow is measured by a differential pressure (DP) device, the controller decides on anappropriate control strategy, and the control valve manipulates	10	CO4

	the flow of applant. Determine the evenuel failure rate, the uprelightlity		
	the flow of coolant. Determine the overall failure rate, the unreliability,		
	the reliability, and the MTBF for this system. Assume a 1-yr period of operation.		
	Component Failure rate μ (fault/yr) for Control Valve – 0.6; for		
	Component Failure rate μ (ratio yr) for Control value – 0.0, for Controller – 0.29 and for DP Cell – 1.41		
	SECTION-C		
	(2Qx20M=40 Marks)		
Q10	Discuss hazardous area classification and its significance in industrial		
	safety. Address the following points:		
	1. Define hazardous area classification and its role in industrial safety.	20	
	2. Explain the concept of an explosive atmosphere and its elements.		CO5
	3. Describe different zone classifications and their characteristics.		05
	4. Provide examples of hazardous zones within a process plant.		
	5. Discuss factors determining the extent and boundaries of hazardous		
	areas.		
Q11	Following a major incident at a chemical processing plant involving a		
	flammable liquid release and subsequent fire, attributed in part to		
	deficiencies in Process Hazard Analysis (PHA) and inadequate		
	Management of Change (MOC) procedures, discuss the role of Process		
	Safety Management (PSM) in preventing such occurrences. Explain the		
	fundamental elements of a thorough PSM.		
	Or		
	Tasked with addressing an incident akin to the Bhopal gas tragedy using		
	ALOHA software, you must replicate the scenario and evaluate the	20	
	potential impact zone. Here's your roadmap:		
	1. Scenario Definition (5 Marks):		
	- Specify the requisite details necessary for ALOHA input to recreate		
	the Bhopal gas incident.		CO5
	2. ALOHA Setup (5 Marks):		
	- Detail the steps for configuring the Bhopal gas incident scenario		
	within ALOHA.		
	3. Modeling and Analysis (5 Marks):		
	- Explain ALOHA's utilization to simulate the dispersion of the toxic		
	gas cloud.		
	4. Results Interpretation (5 Marks):		
	- Outline the method for interpreting ALOHA's output to determine		
	the potential impact zone.		
	Additionally:		
	- Explore the limitations associated with using ALOHA for modeling the		
	-		
	Bhopal gas incident.		
	-		