Name:

Enrolment No:

UPES End Semester Examination, May 2024

Course: Time Series and Forecasting Methods Program: B. Sc. (Hons.) Mathematics Course Code: MATH 3037P

Semester: VI Time: 03 hrs. Max. Marks: 100

Instructions: Attempt all questions.

					SECT	ION A							
	-			(5	5Qx4M=	20Marks	s)						
S. No.									Marks	CO			
Q 1	Examine	whether	4	CO3									
Q 2	Find the s	emi ave											
		Γ	Ye	ear	Produ	ction							
		Ī	20	01	20)							
			20	02	22	2							
			20	03	23	;				CO1			
			20	04	21				4				
			20	05	25	;							
		Γ	20	06	23	5							
			20	07	27	7							
			20	08	24	ŀ							
Q 3	Discuss th	ocess.	4	CO2									
Q 4	Differenti	ate betw	4	CO4									
Q 5	Define au	to covar	4	CO3									
SECTION B													
				(40	Qx10M=	40 Marl	ks)						
	Calculate	the five											
Q 6	Year	1950	1951	1952	1953	1954	1955	1956	10	CO1			
	Values	105	115	100	90	80	95	85	10				
	Given a ra	andom v	ariable Y	with cha	c functio	$n \varphi(\omega) =$	$= E(e^{i\omega Y})$						
Q 7	and a random process defined by $X(t) = \cos(\alpha t + Y)$, show that								10	CO2			
-	$\{X(t)\}$ is	stationar											
Q 8	Find the mean and variance of simple random walk.								10	CO2			

	Compute yearly cyc								
	Year	1958	1959	1960	1961	1962	1963		
	Annual	54.0	40.5	47.0	48.5	42.9	42.1		
	Value			1.0.5.5					
	Year	1964	1965	1966	1967	1968	_		
Q 9	Annual Value	36.6	42.7	45.7	45.1	37.8		10	CO3
				OR					
	Consider to $\varphi_2 X_{t-2} + 1.89, -1.1$ the model	the follow Z_t . For t 3, -3.82,	ving auto r he followi -5.08, -4.4	egressive 1 ng data se 2. Use Yu	nodel of o t <i>X_t</i> : 3.91, ıle-Walker	rder 2, X_t 3.86, 3.81 • equations	$= \varphi_1 X_{t-1} +$, 3.02, 2.62, s to estimate		
		•		S	ECTION-	С			
	C 1		N 1	$\frac{(2Qx)}{1}$	20M = 40 N	larks)	1.1.1.		1
	Consider	a two-stat	e Markov	chain with	the transi	tion proba	bility matrix		
Q 10	Assume th	hat $a = 0$.	20	CO1					
	$P(X_0=0)$	$=P(X_0)$	=1) = 0.5.	-					
	i) Find the	e distribut	tion of X_n	. ii)	Find the	e distribu	tion of X_n		
	when $n - \frac{1}{2}$	> ∞.		1 0		1 1	1		
	product.	wing tab	le gives ti	he sales fi	igures for	a hundred	d units of a		
	1								
	Year		I	II		Π	IV		
	1982		36	34		38	32		
	1983		38	48		52	42		CO4
0.11	1984		42	56		50	52	20	
Q II	1985		56	74		58	62	20	
	1986		82	90		38	80		
	Use least the produc	square m et for the							
			UI						

Compute season method of link r	al indices fro elative:	om the following	ng time series	data using
Vaar/Ouatara	Quaterise includes from the following time series data usingpd of link relative:Quaterly output of coal for 4 yearsr/QuatersIIIIIIIV200165585661200268636367200370505652			
rear/Quaters	Ι	II	III	IV
2001	65	58	56	61
2002	68	63	63	67
2003	70	59	56	52
2004	60	55	51	58