Name:

Enrolment No:

UPES End Semester Examination, May 2024

Course: Transportation Engineering **Program:** B.Tech in Civil Engineering **Course Code:** CIVL 3022 Semester: Sixth Time: 03 hrs Max. Marks: 100

Instructions: 1. Consider yourself a transportation engineer while answering the questions. 2. Use pencil and scale to draw neat and clean diagrams wherever required.

S. No.	List of questions	Marks	СО
Q 1	Select the right answer in the following questions: a. Dowel bars in concrete pavement are placed		
	 a. Dowel bars in concrete pavement are placed i. Along the direction of traffic ii. Perpendicular to the direction of traffic iii. Along 45° to the direction of traffic iv. Can be placed along any direction 		
	 b. Road roughness is measured using Benkelman beam Bump integrator Dynamic cone penetrometer Falling weight deflectometer 	4	C01
	 c. The maximum number of vehicles can be parked with i. Parallel parking ii. Perpendicular parking iii. 45° angle parking iv. 60° angle parking 		
	 d. The softening point of bitumen has the same unit as that of i. Distance ii. Temperature iii. Time iv. Viscosity 		

Q 2	Fill in the blanks:		
	a. For an axle load of 15 tonne on a road, the Vehicle Damage Factor (rounded off to two decimals), in terms of the standard axle load of 8 tonne, is		
	 b. During a CBR test, the load sustained by a remolded soil specimen at 5 mm penetration is 50 kg. The CBR value of the soil will be 	4	CO1
	c. ICBP stands for		
	d. The kerb length required to park 15 vehicles in 30° angle parking is meters.		
Q 3			
	i. Capacity of an intersectionii. Channelization	2+2	CO1
Q 4	Differentiate between the following:		
	i. Alligator cracking and reflection crackingii. Water Bound Macadam and Wet Mixed Macadam	2+2	CO2
Q 5	A road has a horizontal curve of 400 m radius on which a superelevation of 0.07 is provided. Find the coefficient of lateral friction mobilized on the curve when a vehicle is travelling at 100 kmph.	4	CO2
	SECTION B		
Q 6	(4Qx10M= 40 Marks) Illustrate the cross-section of a rigid pavement and label the stress		
X ⁰	regions, different type of joints, along with dowel bars and tie bars used during its construction. Explain the function of each component.	10	CO2
Q 7	 (a) Column I Column II P. Hardness 1. Water adsorption test Q. Porosity 2. Impact test R. Toughness 3. Soundness test S. Durability 4. Abrasion test Match the correct pair of tests and their corresponding properties along with providing justifications. (b) In how many ways urban roads are classified? Discuss the objective purpose of each classification. 	5 + 5	CO2

	40	700		
	30	670		
	25	640		
	20	620		
	No. of Standard Axles, msa	Total thickness, mm		
	Data for 5% CBR value		15 + 5	CO4
	CBR value of the subgrade soil = 5%			
	Vehicle damage factor $= 2.4$			
	Design life of the pavement = 10 years			
	Annual growth rate of the traffic = 5.0%			
	No. of CVs when construction is completed = 2723 veh/day			
	pavement and of individual layers.			
	Pavements" and the following data, design the total thickness of the			
Q 10	a) Using IRC: 37 – 1984 "Guide	lines for the Design of Flexible		
		SECTION-C x20M=40 Marks)		
	rigid pavements along with its classif			
	Interpret and discuss Westergaard's concept of temperature stresses in		10	CO3
	OR			
Q 9	Analyze and elaborate the various flexible and rigid pavement failures generally observed in the field? Explain "Mud Pumping" with neat sketches.			
	60 kmph. Assume a reaction time of of 0.7 and a brake efficiency of 50	f 2.5 seconds, coefficient of friction percent in either case.		
	(b) Calculate the minimum sight distance required to avoid a head-on collision of two cars approaching from the opposite direction at 90 and		0.10	
	of 1800 vehicles/hour. Under the jam condition, the average length occupied by the vehicles is 5.0 m. The speed versus density relationship is linear. For a traffic volume of 1000 vehicles/hour, calculate the density of the traffic stream.		5 + 5	CO3
Q 8	(a) A two-lane urban road with one-w	vay traffic has a maximum capacity		

Q 11	 a) The design thickness of a CC pavement is 26 cm considering a design axle load of 12,000 kg on single axle and M-40 concrete with characteristic compressive strength of 400 kg/cm². The radius of relative stiffness is 62.2 cm. If the elastic modulus of dowel bar steel is 2 x 10⁶ kg/cm², modulus of dowel-concrete interaction is 41,500 kg/cm³ and joint width is 1.8 cm, design the dowel bars for 40% load transfer considering edge loading. b) Evaluate and assess the step-by-step procedure of constructing a new highway on embankment and in cutting. 	12 + 8	
	a) Using the given data below, design the wheel load stresses at interior, edge, and corner regions of a CC pavement using Westergaard's stress equations. Wheel load, P = 5200 kg Modulus of elasticity of cement concrete, E = 3×10^5 kg/cm ² Pavement thickness = 18 cm Poisson's ration of concrete = 0.15 K = 6 kg/cm ³ Radius of contact area = 15 cm	10 + 10	CO4
	 b) Analyze and compare the working principles of the following laboratory tests: i. CBR Test ii. Los Angeles Abrasion Test iii. Bitumen Penetration Test iv. Aggregate Impact Test v. Plate Load Test 	10 - 10	