
Name:

Enrolment No:

	UPES, Dehradun		
Course Course	End Semester Examination, April-May 2024m Name: B. Tech. (CE&RP)SemesterName: Process Dynamics Instrumentation & controlTimeCode: CHCE3007Max. Mar	: VI : 3 hou ks : 100	rs
Instruct	page(s): 02ions: Assume any missing data. Draw the diagrams, wherever necessary. Writen any additional sheet that you use.	e roll numb	ber and
	SECTION A (5X4=20 marks)		
S. No.		Marks	СО
l	<i>Identify</i> the terms used in underdamped second order system?	4	CO1
2	<i>List</i> the assumptions used in the mercury in glass bulb thermometer model.	4	CO1
3	Describe damping?	4	CO2
1	Summarize Routh stability criterion.	4	CO2
5	Demonstrate the way how root locus is plotted	4	CO3
	SECTION B		
	(4X10=40 marks)	1	[
6	Outline the following differential equations using Laplace Transforms. a) $\frac{dx}{dt} - x = e^{3t}$ $x(0) = 2$ b) $\frac{d^2x}{dt^2} - \frac{dx}{dt} + 2x = e^{3t}$ $x(0) = 1$ and $x'(0) = 0$	10	CO1
7	There are N storage tank of volume V Arranged so that when water is fed into the first tank into the second tank and so on. Each tank initially contains component A at some concentration Co and is equipped with a perfect stirrer. A time zero, a stream of zero concentration is fed into the first tank at volumetric rate q. Predict the resulting concentration in each tank as a function of time.	10	CO2
8	$ft_{3}/min \qquad A = 2 ft_{2}$ $R_{1} = 2 \qquad R_{2} = 5$ $Demonstrate \text{ expression for H(s)/Q(s). Substitute the appropriate values in the transfer function and report.}$	10	CO3
9	Appraise the reducion of given block diagram and find Y/X	10	CO4

