Name:

Enrolment No:

UPES End Semester Examination, May 2024

Course: Machine Design for Aerospace Program: B. Tech Aerospace Course Code: ASEG 3029

Semester: VI Time : 03 hrs. Max. Marks: 100

Instructions: Assume suitable data if needed.

SECTION A (5Qx4M=20Marks)					
S. No.		Marks	СО		
1	Analyze how different types of loads (torsional, axial, bending) affect key selection.		CO1		
2	Classify the sliding contact bearing with a suitable example.		C01		
3	Discuss the assumption of Lewis's equation valid for gear design.	04	C01		
4	Compare the advantages and disadvantages of using a ball bearing versus a roller bearing	04	C02		
5	Draw a stress time plot for the following fatigue stress with a. Completely reverse fatigue stress. b. Repeated fatigue stress.	04	C01		
	SECTION B				
	(4Qx10M= 40 Marks)		1		
6	Differentiate hydrostatic and hydrodynamic Lubrication.	10	CO1		
7	An aircraft Fan cowling assembly used riveted joint, consisting of four identical rivets, is subjected to an eccentric force of 5 kN as shown in Fig. Determine the diameter of rivets, if the permissible shear stress is 60 N/mm ² .	10	C03		
8	A ball bearing is operating on a work cycle consisting of three parts a radial load of 3000 N at 1440 rpm for one quarter cycle, a radial load of 5000 N at 720 rpm for one-half cycle, and radial load of 2500 N at 1440 rpm for the remaining cycle. The expected life of the bearing is 10,000 h. Calculate the dynamic load-carrying capacity of the bearing.	10	C04		

	OR			
	A single-row deep groove ball bearing is used to support the lay shaft of			
	a four-speed aircraft propeller gear box. It is subjected to the following			
	loads in respective speed ratios			
	Gear Axial load Radial % time			
	(N) load (N) engaged			
	First gear 3250 4000 1% Second gear 500 2750 3%			
	Third gear 50 2750 21%			
	Fourth gear Nil Nil 75%			
	The lay shaft is fixed to the engine shaft and rotates at 1750 rpm. The			
	static and dynamic load-carrying capacities of the bearing are 11600 and			
	17600 N respectively. The bearing is expected to be in use for 4000 hours			
	of operation. Find out the reliability with which life could be expected.			
9	A hot rolled steel shaft is subjected to a torsional load that varies from			
	300 kN-mm(clockwise) to 100 kN-mm (anticlockwise). As an applied			
	bending moment at at critical section varies from 400 kN-mm to (-			
	200kN-mm). the shaft is of uniform diameter and no keyway is present	10	C02	
	at the critical section. Determine the required shaft diameter by taking	10		
	the factor of safety is 1.5. assume Sut = 560 Mpa, Syt= 420 Mpa, design			
	stress is 280 Mpa, modification factor is 0.62 size correction factor 0.85			
	& load factor for bending is 1 & load factor for torsion = 0.58 .			
	SECTION-C (2Qx20M=40 Marks)			
10				
10	A shaft transmitting 50 kW at 125 rpm from the gear G1 to the gear G2			
	and mounted on two single-row deep groove ball bearings B1 and B2 is shown in Fig. The gear teach foreas are $Pt_1 = 15015$ N. $Pr_2 = 5703$ N. Pt_3			
	shown in Fig. The gear tooth forces are $Pt_1 = 15915$ N, $Pr_1 = 5793$ N, $Pt_2 = 9549$ N, $Pr_2 = 3476$ N. The diameter of the shaft at bearings B1 and B2			
	is 75 mm. The load factor is 1.4 and the expected life for 90% of the			
	bearings is 10000 h. Select suitable ball bearings.			
	G_2			
	150			
	B_2			
	P.0 500			
	Pp A	20	CO4	
	(a) (G1) 125			
	P_{12} R_{V2} P_{11} P_{11}			
	P12 B2 RH2			
	150			
	500, Pt1 G1 Bu			
	(b) B ₁			
	125			

	10 mm	20 mm					
	(i) No. 61800 ($C = 1480$ N)	(i) No. 61804 (C = 2700 N)					
	(ii) No. 6000 $(C = 4620 \text{ N})$	(ii) No. 16404 ($C = 7020$ N)					
	(iii) No. 6200 ($C = 5070$ N)	(iii) No. 6004 ($C = 9360$ N) (iii) No. 6204 ($C = 12700$ N)					
	(iv) No. 6300 $(C = 8060 \text{ N})$	(iv) No. 6204 (C = 12700 N) (v) No. 6304 (C = 15900 N)					
		(v) No. 6304 ($C = 13500$ N) (vi) No. 6404 ($C = 30700$ N)					
11	Design an Aircraft engine gearbox	having a pair of straight teeth spur					
	gear having 20 ⁰ full depth involute						
	runs at 300 RPM and the speed ratio is 3:1. The following data are given						
	no of teeth on pinion is 15. The serv						
	$=\frac{3+v}{3}$ tooth form factor (y = 0.154)						
	elastic stress for pinion and gear material are 120 Mpa and 100 Mpa						
	check the Gear for wear and surface endurance limit 600 Mpa and						
	modulus of elasticity for pinion & Gear 200 GPa and 100 Gpa						
	Respectively.						
	itespeen ery:						
	0	R					
	A Helicopter propeller blade is drive						
	consists of 24 teeth pinion rotating at 5000 rpm and supplying 2.5 kW						
		n is 4 : 1. The normal pressure angle					
	and helix angle are 20° and 23° re	20	C04				
	hardened steel (Sut = 750 N/mm2).	The service factor and the factor of	20	CUI			
	safety are 1.5 and 2 respectively.						
	accuracy of Grade 4						
		ar design, assume that the velocity					
		ynamic load and that the face width					
		nodule. Assuming the pitch line					
	•	timate the normal module.					
	· · · · · ·	e value of the normal module and					
	calculate the main dimen	e					
	•	oad using Buckingham's equation					
		e load for the above dimensions.					
	What is the correct facto						
		for the gears, assuming a factor of					
	safety of 2 for wear cons	Ideration					