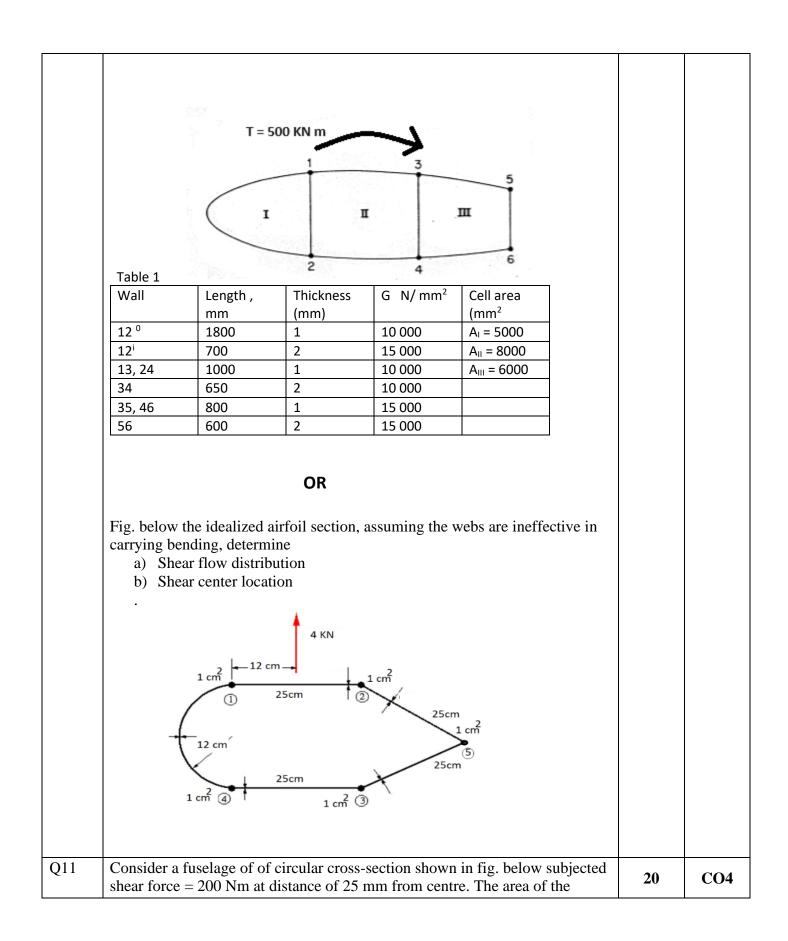
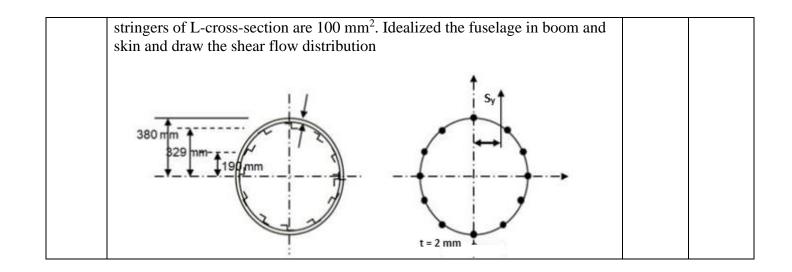
Name:

Enrolment No:

UPES End Semester Examination, May 2024


Course: Aircraft Structures-II Program: B. Tech ASE Course Code: ASEG 3021


Semester: VI Time : 03 hrs. Max. Marks: 100

Instructions: Assume any suitable value for the missing data

SECTION A					
(5Qx4M=20Marks)					
S. No.		Marks	СО		
Q 1	 True/False. a) Torsional modulus of thin walled section is proportional to the thickness cube of the cross-section. b) Booms in idealized cross-section carries only bending stress and not shear stress . 	4	CO1		
Q2	 True/False a) Shear centre location is independent of intensity of load b) Shear flow distribution in an idealised fuselage cross-section will always has symmetry about both axis. 	4	C01		
Q3	 True/False. a) In pure torque maximum shear tress in thin walled open section is directly proportional to the thickness of section. b) Twist is zero in the cross-section if shear load passes through the shear centre. 	4	CO1		
Q4	Determine the maximum bending stress carried by the idealized section subjected to positive bending moment of 500KNm about the centroid of section. Take the area of each boom = 200 mm ² .	4	CO2		
Q5	An idelaised section subjected to the shear force of 100 KN, If the area of booms are, $A_1 = 50 \text{ mm}^2$, $A_2 = 100 \text{ mm}^2$ and $A_3 = 150 \text{ mm}^2$, and $L_1 = L_2 = 50 \text{ mm}$, the show the distribution of the shear flow if thickness = 1 mm	4	CO3		

					
	A ₃				
	L,				
	• A ₁				
	SECTION B				
(4Qx10M= 40 Marks)					
Q 6	Consider two shaft one with thin walled of thickness 2 mm and radius 10 cm and other with solid cross-section of same radius subjected to same torque of				
	100 KN m, determine				
	a) The ratio of maximum shear stress of both the same cross-section	10	CO3		
	b) The raio of twist per init length	10	005		
	Based on the obtained value comment on the the enginerring design aspect of				
	shaft selection				
Q7	At a particular point in a structural member a two-dimensional stress system				
	exists where $\sigma_x = 60$ N/mm2, $\sigma_y = -40$ N/mm ² and $\tau_{xy} = 50$ N/mm ² . If				
	Young's modulus $E = 200\ 000\ \text{N/mm}^2$ and Poisson's ratio $v = 0.3$ calculate	10	CO2		
	the direct strain in the x and y directions and the shear strain at the point. Also	20	001		
	calculate the principal strains at the point and their inclination to the plane on which σ_x acts;				
Q8	State Bredt – Batho Thoery, and derive the expression for the twist per unit	10	GOO		
	length in the thin walled closed cross-section under pure torque	10	CO3		
Q9	A thin-walled, cantilever beam of unsymmetrical cross-section supports shear				
	loads at its free end as shown in Fig. below. Calculate the value of direct				
	stress (bending stress)at the extremity of the lower flange (point A)				
	40 mm				
	200 N 200 N 2.0 mm	10	CO4		
	100 mm 2.0 mm				
	1.0 mm				
	1000 mm				
	-				
	SECTION-C		1		
(2Qx20M=40 Marks)					
Q10	Determine and draw the shear flow distribution of idealized wing section as				
	shown in Fig. below, the wing is subjected to CCW torsion $= 500$ KN m.	20	CO4		
L	Required data is provided in Table 1				

