Name:

Enrolment No:

UPES End Semester Examination, May 2024

Course: Reservoir Engineering-II Program: B. Tech. APE UP Course Code: PEAU 3038 Nos. of page(s) : 3 Semester: VI Time : 03 hrs. Max. Marks: 100

Instructions:

a. All questions are compulsory. There is internal choice in Q9 and Q11.

- b. Answers must carry supporting material such as equations and diagrams.
- c. Abbreviations used in the questions are standard and have their usual meaning.

	SECTION A (5Qx4M=20Marks)		
S. No.	Statement of question	Marks	СО
Q 1	Define principle of MBE. Write down the equation to calculate water influx (W _e).	water influx 4 CO1	
Q 2	Illustrate the different methods regarding the effect of non hydrocarbon components on the pseudo-critical properties of the gases.		CO1
Q 3	List out the types of compressibility with suitable equations.		CO2
Q 4	Write down the short notes on productivity index and capillary pressure with suitable figure.	4	CO2
Q 5	Illustrate the types of gas oil ratios with suitable equations. List out the elements of performance prediction.	4	CO3
	SECTION B (4Qx10M= 40 Marks)		
Q 6	 (a) Explain coning and mobility ratio. Mention the significance of mobility ratio in coning. Illustrate the reasons and remedies of excessive water in field. (b) Explain types of gas reservoir with suitable P-T diagram. 	10 (5+5)	CO2

Q 7	(a)Discuss pressure maintenance. List out the advantages of pressure maintenance. Write down the factors important in WI pressure maintenance.				
	(b) The pressure history of a water-drive oil reservoir is given below:				
	t, days p, psi				
	0	3700 (pi)			
	100	3650			
	200	3610	10	CO3	
	300	3580	(5+5)	000	
	400	3540			
	The aquifer is under a steady-state flowing condition with an estimated water influx constant of 145 bbl/day/psi.				
	Calculate the cumulative water influx after the steady-state model.	100, 200, 300, and 400 days using			
Q 8	(a) Describe different steps of the initial development plan. Illustrate the development strategy of oil & gas fields. List out the				
	(b) Discuss reservoir simulation. List out the & gas fields.	different modeling methods in oil	(5+5) CO4		
Q 9	A gas well is produced at a rate of 18,000 ft ³ /day from a gas reservoir at an average pressure of 3,500 psia and a temperature of 145°F. The specific gravity is 0.78 and the z-factor is $z = 0.87$. Calculate the gas flow rate in scf/day. OR				
	Calculate rock and water expansion volume when the pressure falls from				
	1125 psig to 700 psig [MBE].				
	Data given:		10	CO4	
	$S_{wi} = 0.205$				
	$c_{f} = 4x10^{-6}$				
	$c_{w} = 4x10^{-6}$				
	$N = 90.46 \times 10^{6} [STB]$				
	Boi at 1200 psig = 1.135 [RB/STB]				
	SECTI (2Qx20M=				
Q 10	(a) Discuss exponential Decline Curve Anal	ysis with equation & figure.			

	(b) Given the following	data for the sandst	one oil field:		
	Area = 26,500 acr				
	Net productive thi				
	Porosity $= 25\%$				
	Average $Swi = 40$				
	-	essure, $pi = 2500 psi$	ia		
	-	ssure, pa = 500 psia			
	Bo at $pi = 1.45$ bb				
	Bo at $pa = 1.20$ bb	ol/STB		20	
	Sg at $pa = 32\%$ S or ofter water invasion $= 22\%$				CO2
	Sor after water invasion = 22%				
	Calculate:				
	1. Initial oil in place				
	2. Oil in place after volumetric depletion to abandonment				
	pressure				
	3. Oil in place after water invasion at initial pressure				
	4. Oil reserve and Recovery Factor by volumetric depletion to				
	abandonment pressure 5. Oil reserve and Recovery factor by full water drive				
	5. 011 reserve		by full water drive		
Q 11	(a) Discuss elements of performance prediction. Calculate the reduction in			iction in	
	the pore volume of a reservoir due to a pressure drop of 20 psi. The				
	reservoir original pore volume is two million barrels with an estimated				
	formation compressibility of 20×10^{-6} psi-1				
	formation compressionity of 20 x 10 psi 1				
	(b) A hydrocarbon gas mixture has a specific gravity of 0.72. Calculate the				
	isothermal gas compressibility coefficient in 2500 psia and 140°F by				
	assuming: $Z=0.78$ and $C_{pr}=0.3627$, under following behavior:				
	I. An ideal gas behavi	-	gas behavior		
	I. All Ideal gas bellavi	OR II. A leaf §			
	(a) Discuss drive mechanism. List out the different types of drive mechanism			-	CO4
	and explain each drive mechanism with suitable figures and examples in				001
	detail.				
	(b) Describe the factors which influence oil recovery by water drive mechanism.				
	Calculate the cumulative water influx that results from a pressure drop of				
	210 psi at the oil-water contact with an encroachment angle of 85°.				
	The reservoir-aquifer system is characterized by the following properties:				
		Reservoir	Aquifer		
	Radius, ft	3400	9,000		
1		0.22	0.16		
	Porosity, fraction		0.10		
		5 x 10 ⁻⁶	4 x 10 ⁻⁶		
	$C_{\rm f,} {\rm psi}^{-1}$ $C_{\rm w}, {\rm psi}^{-1}$				