UPES, Dehradun			
End Semester Examination, April-May 2024Program Name: B. Tech. APE GasSemesterCourse Name: Process Dynamics Instrumentation and controlTimeCourse Code: CHGS 3028Max. MarNos. of page(s): 02InstructionsInstructions: Assume any missing data. Draw the diagrams, wherever necessary		: VI : 3 hours ·ks: 100	
SECTION A (5QX4M=20 marks)			
S. No.		Marks	CO
1	<i>Identify</i> the terms used in underdamped second order system.	4	CO1
2	<i>List</i> the assumptions used in the mercury in glass bulb thermometer model.	4	CO1
3	Describe damping.	4	CO2
4	Summarize Routh stability criterion.	4	CO2
5	Dramatize the way the root locus is plotted.	4	CO3
SECTION B (40X10M-40 marks)			
6	Solve the following differential equations using Laplace Transforms. $\frac{dx}{dt} - x = 2sint \qquad x(0) = 0$	10	CO1
7	Consider the stirred tank reactor given here. ^C _o , Q The reaction occurring is A→B and proceeds at a rate of r=KC Where r is moles of A reacting /(volume) (time) K is reaction rate constant C(t) is the concentration of A in the reactor V is the volume of the reactor Q is the volumetric flow rate Co is the concentration of A in the feed stream. Assuming the constant density and volume, <i>Outline</i> the transfer function relating the concentration of A in the reactor to feed stream using physics of the problem.	10	CO2
8	Demonstrate a formula for finding the time constant of the liquid-level system shown below, when the average operating level is h,. The resistance R is linear. The tank has three vertical walls and one which slopes at an angle α from the vertical as shown in figure. The distance separating the parallel walls is 1.	10	CO3

