Name:

**Enrolment No:** 



## UPES End Semester Examination, May 2024

## Course: Polymers, Ceramics and Composites Program: B.Tech AMNT Course Code: MEMA3013

Semester : VI Time : 03 hrs. Max. Marks: 100

## **Instructions:**

|                    | SECTION A                                                                                                                                                                                                                   |       |     |  |  |  |  |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----|--|--|--|--|
|                    | (5Qx4M=20Marks)                                                                                                                                                                                                             |       |     |  |  |  |  |
| S. No.             |                                                                                                                                                                                                                             | Marks | СО  |  |  |  |  |
| Q 1                | Explain how does molecular weight change with degree of polymerization?                                                                                                                                                     | 4     | CO2 |  |  |  |  |
| Q 2                | Define the term composites materials. What properties are to be satisfied by these sophisticated materials?                                                                                                                 | 4     | CO1 |  |  |  |  |
| Q 3                | Name the major varieties in which fused silica glass available? Describe their characteritics and uses.                                                                                                                     | 4     | CO2 |  |  |  |  |
| Q 4                | Analyze the concepts of 'Isostress' and 'Isostrain' and compare how they differ from each other.                                                                                                                            | 4     | CO4 |  |  |  |  |
| Q 5                | With the help of example illustrate addition polymerization. Give some examples of additional polymers.                                                                                                                     | 4     | CO1 |  |  |  |  |
| SECTION B          |                                                                                                                                                                                                                             |       |     |  |  |  |  |
| (4Qx10M= 40 Marks) |                                                                                                                                                                                                                             |       |     |  |  |  |  |
| Q 6                | Would you expect a particle-strengthened material to be stronger than the fiber-<br>strengthened materials? What are the different parameters that decide the<br>strengthening in particulate materials?                    | 10    | CO3 |  |  |  |  |
| Q 7                | Explain the primary objective of producing ceramic matrix composites.<br>Analyze and compare the tensile behavior of monolithic ceramics to that of<br>ceramics reinforced with particulate and continuous fibers.          | 10    | CO2 |  |  |  |  |
| Q 8                | Define Ferrimagnetism? How can you classify ceramic magnets? What name is given to materials which exhibit the phenomenon?                                                                                                  | 10    | CO3 |  |  |  |  |
| Q 9                | Explain how highly polar atoms bonded to the main carbon chain strengthen a thermoplastic. Illustrate with suitable examples.<br>OR<br>Discuss the basic principles behind the use of fiber reinforcement composites.       | 10    | CO2 |  |  |  |  |
| SECTION-C          |                                                                                                                                                                                                                             |       |     |  |  |  |  |
| (2Qx20M=40 Marks)  |                                                                                                                                                                                                                             |       |     |  |  |  |  |
| Q 10               | A continuous and aligned glass fiber reinforced composite consists of 40 vol% of glass fibers having a modulus of elasticity of 69 GPa and 60 vol% of a polyester resin that, when hardened, displays a modulus of 3.4 GPa. | 20    | CO4 |  |  |  |  |

|      | <ul><li>(a) Compute the modulus or direction.</li><li>(b) If the cross-sectional area this longitudinal direction, c of the fiber and matrix phase</li><li>(c) Determine the strain that</li><li>(b) is applied.</li></ul> |                                                     |                                      |                   |    |  |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|--------------------------------------|-------------------|----|--|
| Q 11 | Set a comparison between the<br>plasticisers? What is the purp<br>plasticisers act and affect the<br>some common plasticisers.<br>Define the term Polydispersi<br>hypothetical polymer materia                             | 20                                                  | C04                                  |                   |    |  |
|      | Molecula<br>50<br>250                                                                                                                                                                                                      | ar weight range<br>(g/mol)<br>00-25000<br>000-50000 | Weight<br>Fraction, Wi<br>0.1<br>0.4 |                   | 20 |  |
|      | Determine the weight average for the above polymer.                                                                                                                                                                        | 00-100000<br>000-500000<br>ge molecular weig        | 0.3<br>0.2<br>ht of the polymo       | er as well as PDI |    |  |