Name:

Enrolment No:

		UPES			
C		End Semester Examination, May 2024			
Program: BTech Advanced Materials and Nanotechnology Time			emester: VI		
			lax. Marks: 1		
		uestions carefully and attempt questions of one section in on	e place.		
	-	B, Q6, and in Section C, Q 10 have internal choice questions	-		
3.	Use of the	calculator is allowed.			
		SECTION A			
C N		(5Qx4M=20Marks)			
S. No.			Marks	CO	
Q 1	Discuss H	look's law in the case of AFM.	4	CO1	
Q 2	How doe	s AFM overcome the limitations of STM?	4	CO1	
Q 3	Elaborate on the following equation:			G03	
	$\beta_{Total} = \beta_{sample} + \beta_{instrument}$		4	CO3	
Q 4	Describe	the working principle behind Xray Fluorescence Spectroscopy.	4	CO3	
Q 5	Define				
	i)	Singlet and triplet states	(2+2)	CO2	
	ii)	Fluorescence and Phosphorescence			
		SECTION B			
		(4Qx10M= 40 Marks)			
Q 6	Derive ar	nd explain the equation for Beer-Lambert's Law.			
	OR				
	O N		10		
	i)	After analyzing an unknown sample using UV-Visit	ole 10		
		spectroscopy, you observe an absorbance of 0.30, assuming t		CO2	
		pathlength to be 1 cm, and concentration of the sample to be 2		002	
		M, what is the molar absorption coefficient of the unknow	vn (5+5)		
	;;)	sample? A solution of thickness 3 cm transmits 40% of light. Calcula			
	ii)	the concentration of the solution given that the molar absorption			
		coefficient is $4000 \text{ dm}^3 \text{mol}^{-1} \text{cm}^{-1}$.			

Q 7	i) What are symmetry elements? Briefly mention the different		
	types of symmetry operations.ii) Describe the following operation of TiCl₄:		
	Ch. Cl.	(8+2)	CO2
	Cl ₄ Cl ₃ Cl ₃	(0+2)	02
	Cl_2 Cl_4 Cl_4		
Q 8	Identify the role of quantum mechanics in spectroscopy.	10	CO2
Q 9	Schematically show the instrumentation behind AAS and AES.	10	CO3
	SECTION-C		
	(2Qx20M=40 Marks)		
Q 10	i) In ¹ H-NMR, why is CDCl ₃ used and not CHCl ₃ as a solvent?		
	 ii) List the different types of NMR available. iii) How many ¹H-NMR signals will you observe for the following 		
	molecules, and why?		
	a) pentane		
	b) 3-methylpent-1-ene		
	c) cyclopenta-1,3-diene		
		(5+5+(4 ×2.5))	CO3
	d) benzene	×2.5))	
	OR		
	i) Describe Rayleigh and Raman scattering.		
	ii) A sample was excited by 435 nm wavelength light, the first		
	Raman line was observed at 448 nm. Calculate the Raman shift.		
	iii) For exciting line at $\lambda = 600$ nm, the stokes line for the substance		
	falls at $\lambda = 615$ nm. What will be the nearest λ value for the anti- stokes line for the same material?		
Q 11	Discuss the instrumentation of STM and AFM in detail.	(20)	CO1