Name:

Enrolment No:

UPES End Semester Examination, May 2024

Course: Environmental Degradation of Materials Program: B.Tech AM&NT Course Code: MEMA 3010 Semester: VI Time : 03 hrs. Max. Marks: 100

Instructions: Instructions: All questions are compulsory. The question paper consists of 11 questions divided into 3 sections A, B and C. Section A comprises 5 questions of 4 marks each, Section B comprises 4 questions of 10 marks each and Section C comprises 2 questions of 20 marks each.

SECTION A (5Qx4M=20Marks)

S. No.		Marks	СО			
Q 1	Discuss (a) Fretting Corrosion (b) Fatigue Corrosion	4	CO1			
Q 2	Discuss Ist and 2 nd Gibb's Duhem Equation and explain its importance.	4	CO1			
Q 3	Explain Tafel's theory of hydrogen overvoltage.	4	CO1			
Q 4	Explain concentration polarization.	4	CO1			
Q 5	Compute the corrosion penetration rate, in mpy, for iron corrosion in HCI (to form Fe ²⁺ ions) if the corrosion current density is 8 x 10 ⁻⁵ A/cm ² . For iron A = 55.85 g/mol and ρ =7.9 g/cm ³ .	4	CO2			
SECTION B						
	(4Qx10M= 40 Marks)					
Q 6	Ni corroded in deaerated water with $P_H = 8$ and K_{sp} (Solubility product) = 1.6 x 10^{-16} . Ni \rightarrow Ni (OH) ₂ and $E_{Ni^{+2/Ni}}^{o} = -0.25$ V. Analyze the feasibility of the reaction.	10	CO3			
Q 7	Analyze the polarization curve shown below: $\begin{array}{c} 0.3 \\ 0.2 \\ 0.1 \\ 0.1 \\ 0.2 \\ 0.2 \\ 0.$	10	CO3			

Q 8	The limiting current density i_L , associated with concentration polarization is					5	
	given by: $i_l = DnF\frac{c}{2}$						
	(i)State what each of the parameters in the above equation means						CO2
	(i) Derive the above equation using Fick's first and Faraday's laws State						
	clearly any as	sumptions vo	ou make		,		
Q 9	Calculate the	i =					
	$1 \mu A/cm^2$)						
	Elements	Wt%	N (electrons)	Density	Molecular		
				(gm/cm^3)	Weight		
	Cr	18	1	8.9	52.01	10	CO3
	Ni	8	2	10.2	58.68		
	Мо	3	1	95.95	95.95		
	fe	70	2	55.85	55.85		
			·	·			
			SECTI	ON-C			
			(2Qx20M=4)	40 Marks)			
Q 10	Construct a p	ourbaix diag	gram using the foll	owing reactio	ons:		
	(1) $Ni^{+2} + 2\rho \rightarrow Ni$						
	(1) $Nt \rightarrow 2e \rightarrow Ni$ (2) $Ni + H_20 \rightarrow Ni0 + 2H^+ + 2e \text{ or } Ni0 + 2H^+ + 2e \rightarrow Ni + H_20$ (2) $Ni^{+2} + 2H_20 \rightarrow Ni(0H) \rightarrow 2H^+$						
	(3) N (-7) + 2 I	$H_2 U \rightarrow NI(U)$	$n_{j_2} + 2n$				
	$(4) N t O + H_2$	$_2 O \rightarrow N1(OH)$	$()_{2}$				
	$(5) H^+ + e -$						
	(6) $O_2 + 4H^+$						
	$(7) 2H_2O + 2$						
	Thermodynam	20	CO3				
						-0	000
	$\mu_{Ni}^o = 0$		$\mu_{H_{2}}^{o} = 0$	0			
	$\mu_{Ni^{+2}}^{o} = -4$	6398 [/mol	$\mu_{0}^{o} = 0$)			
	$ _{u_{Nio}^{o}}^{i} = -21$	5729.8 I/m	ol $u_{0}^{0} =$	-235964.2	I/mol		
	$u_{Ni(OII)}^{O} =$	-452690 I/	$mol \qquad \mu_{H_20} =$	- 1571471	I/mol		
	$\mu_{u+}^{o} = 0$						

Q 11	Zinc is being deposited from a 1M ZnCl ₂ electrolyte whose pH is 3. The electrolytic cell consists of a pair of planar electrodes. The submerged area of each electrode is 1 m ² , the anode-cathode distance (ACD) is 0.02 m, and the solution conductivity (σ) is 4 Ω^{-1} m ⁻¹ . At 25 °C both zinc deposition and hydrogen evolution are possible. Assume that the reactions follow Tafel behaviour. For the zinc reaction $\beta_{Zn} = 0.5$ and $i_{o,Zn} = 10^{-3}$ A/m ² . For hydrogen $\beta_{H_2} = 0.5$ and $i_{o,H2} = 10$ -5 A/m ² . The voltage at the cathode with respect to the SCE (Vc) is – 1.2 V. Ignore activation overpotential at the anode concentration overpotential. a) Calculate the rate of Zn deposition and Vcell, assuming H ₂ evolution is suppressed. Neglect activation overpotential at the anode.	20	CO2			
	OR					
	Discuss concentration overvoltage using a polarization curve. Also, explain the effect of current on overvoltage using a polarization curve.					