Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, April/May 2024

Course: Solid State Physics Program: B.Sc. (H) Physics Course Code: PHYS 3021 Semester : VI Time : 03 hrs. Max. Marks: 100

Instructions: 1) Mention your Roll No. at the top of the question paper. 2) Attempt all the parts of a question at one place only.

	SECTION A		
S. No.	(All questions are compulsory)	Marks	СО
Q 1	What is piezoelectric effect? Mention a few applications of piezoelectric effect.	2+2	CO1
Q 2	A magnetic field of induction $\mathbf{B} = 2.0 \text{ Wb/m}^2$ is applied perpendicularly to the plane of the electron's path of radius 5.1 x 10 ⁻¹¹ m. Calculate the change in magnetic moment of a circulating electron.	4	CO3
Q 3	Draw the fermi-energy diagram for intrinsic and extrinsic semiconductors.	4	CO3
Q 4	Write a short note on Meissner's effect.	4	CO1
Q 5	Differentiate between Type I and Type II superconductors.	4	CO2
	SECTION B		
	(All questions are compulsory)		
Q 6	A beam of X-rays of wavelength 1.54 Å is incident on a cubic crystal at 13°40' when the first order Bragg's reflection occurs from (112) planes. Calculate the interatomic spacing.	10	CO4
Q 7	What is pyroelectricity? Explain with the help of an example.	10	CO2
Q 8	A current of 50 A is established in a rectangular slab of copper of width 2 cm and 0.5 cm thickness. A magnetic field of induction 1.5 T is applied perpendicular to both current and the plane of the slab. The Hall voltage developed across the slab is measured to be 3.29×10^{-7} volt. Calculate the concentration of the free electrons in copper.	10	CO3
Q 9	What do you mean by the London penetration depth? Show that the London penetration depth is given by the expression $\lambda = \left(\frac{m}{\mu_o e^2 n_s}\right)^{1/2}$	2+8	CO3

SECTION-C					
0.10	(Q10 is compulsory while Q 11 has internal choice)				
Q 10	Deduce an expression for the maximum angular frequency during the motion of atoms of monoatomic 1D crystal.	20	CO1		
Q 11	Prove that the local field for structures possessing cubic symmetry is given by $E_L = E + \frac{P}{3\varepsilon_o}$ where, the symbols have their usual meanings. OR	20	CO2		
	Derive the Clausius-Mossotti equation in dielectrics.				
Values	of some physical constants:				
Planck	's constant, $h = 6.6 \times 10^{-34} \text{ J.s}$				
Boltzm	ann's constant, $k = 1.38 \times 10^{-23} \text{ J/K}$				
Mass o	f electron, $m_e = 9.1 \times 10^{-31} \text{ Kg}$				
Mass o	f proton, $m_p = 1.67 \times 10^{-27} \text{ Kg}$				
Velocit	sy of light, $c = 3 \times 10^8 \text{ m/s}$				
Rydber	rg Constant, $R = 1.097 \text{ x } 10^7 \text{ m}^{-1}$				
	dro's number = 6.023×10^{23}				
Permitt	ivity of free space, $\varepsilon_0 = 8.85 \text{ x } 10^{-12} \text{ F/m}$				
D	bility of free space, $\mu_0 = 4\pi \times 10^{-7} \text{ H/m}$				