Name:

Enrolment No:

UPES

End Semester Examination, May 2024

Course: Machine Learning and Artificial Intelligence in Sustainability

Program: B. Tech Sustainability Engineering

Course Code: SUEN 2005

Time: 03 hrs. Max. Marks: 100

Semester: IV

Instructions: Attempt all the questions

SECTION A
(5Qx4M=20Marks)

			(SQX	4M=20N	Tarks)			
S. No.							Marks	СО
	truct a bar graph o	of the follow	ing data:					
		<20 <40		<80	<100]	4	CO1
	o of Students	10 40	80	100	110	J		
Q 2 The f	ollowing are the mo	onthly evap	oration da	ta (Janl	Dec.) at a	Dam in a certain year in cm:		
		16, 14, 17,	25, 28, 21	, 16, 16,	16, 21, 10	6, 16	4	CO1
Calc	late the variance fo	or the data a	nd interp	ret its ph	ysical sig	nificance.		
Q 3 Desc	ribe the design of ar	n intelligent	agent.				4	CO2
Q 4 Defin a b c d	Stochastic Proces Effectors	S					4	CO3
Q 5 Diffi	1	einforced le	arning				4	CO4
			S]	ECTION	N B			

(4Qx10M= 40 Marks)

Q 6	A sample of 10 is drawn randomly from a certain population. The sum of the squared deviations from the mean of the given sample is 50 . Test the hypothesis that the variance of the population is 5 at 5 percent level of significance.		
	OR		
	There are 100 students in a university college and the whole university, inclusive of this college, the number of students is 2000. In a random sample study, 20 were found smokers in the college and the proportion of smokers in the university was 0.05. Is there a significant difference between the proportion of smokers in college and university? Test at 5 percent confidence level.	10	CO1
Q 7	Write a Python program to perform clustering (dendrograms) to combine the states of India having the water quality parameters data: Nitrate, fluoride, rain, soil type, and groundwater levels . Explain each line of code.	10	CO4
Q 8	Analyze the applications of AI & ML in sustainability. Elucidate with examples.	10	CO3
Q 9	Why Monte Carlo Simulations are important in the case of a stochastic process? Analyze the dice ball game (as in Casino) to predict the chances of the player winning the game.	10	CO2
	SECTION-C (2Qx20M=40 Marks)		
Q 10	Describe the popularity of ANN models in machine learning. Present the general architecture of ANN models. Design an ANN model for water potability prediction using the following parameters: pH, Hardness, Chloramines, Sulphate, Conductivity, Organic carbon, Trihalomethanes, and Turbidity.		
	OR	20	CO4
	The stage-discharge data of a river are given below. Establish the stage-discharge relationship to predict the discharge for a given stage. Assume the value of stage for zero discharge as 35.00 m. What is the correlation coefficient of the relationship established above? Estimate the discharge corresponding to stage values of 40 m and 48 m respectively.		

	Stage (m)	Discharge (m³/s)	Stage (m)	Discharge (m³/s)			
	35.91	89	39.07	469			
	36.90	230	41.00	798			
	37.92	360	43.53	2800			
	44.40	3800	48.02	5900			
	45.40	4560	49.05	6800			
	46.43	5305	49.55	6900			
			49.68	6950			
rating cu	rve constants.	sents the gauge read	ling corresponding	to zero discharge, C	r and b are		
values.	lata given belov	v, plot the series and	l construct an ARM	IA model to predict	the future		
values.	onth	y, plot the series and	l construct an ARM	IA model to predict			
values.		-		-			
values. Mo	onth	Passengers	Month	Passenge			
values. Mo Jai	onth n-49	Passengers 112	Month Jan-50	Passenge 115			
values. Mo Ja Fe	onth n-49 b-49	Passengers 112 118	Month Jan-50 Feb-50	Passenge 115 126		20	COL
values. Modeling Jai Fe Mai Ap	onth n-49 b-49 nr-49	Passengers 112 118 132	Month Jan-50 Feb-50 Mar-50	Passenge 115 126 141		20	CO3
values. Mo Ja Fe Ma Ap	onth n-49 b-49 nr-49 r-49	Passengers 112 118 132 129	Month Jan-50 Feb-50 Mar-50 Apr-50	Passenge 115 126 141 135		20	CO3
values. Mo Jai Fe Ma Ap	onth n-49 b-49 nr-49 r-49	Passengers 112 118 132 129 121	Month Jan-50 Feb-50 Mar-50 Apr-50 May-50	Passenge 115 126 141 135 125		20	CO3
values. Mo Ja Fe Ma Ap Ma Ju Ju	onth n-49 b-49 ur-49 r-49 y-49 n-49	Passengers 112 118 132 129 121 135	Month Jan-50 Feb-50 Mar-50 Apr-50 May-50 Jun-50	Passenge 115 126 141 135 125 149		20	CO3
values. Mo Jai Fe Ma Ap Ma Ju Ju Au	onth n-49 b-49 nr-49 r-49 n-49	Passengers 112 118 132 129 121 135 148	Month Jan-50 Feb-50 Mar-50 Apr-50 May-50 Jun-50 Jul-50	Passenge 115 126 141 135 125 149 170		20	CO3
Values. Model Ja Fe Ma Ap Ma Ju Ju Au Se	onth n-49 b-49 nr-49 r-49 ny-49 n-49 l-49 g-49	Passengers 112 118 132 129 121 135 148 148	Month Jan-50 Feb-50 Mar-50 Apr-50 May-50 Jun-50 Jul-50 Aug-50	Passenge 115 126 141 135 125 149 170		20	CO3
values. Mo Ja Fe Ma Ap Ma Ju Ju Au Se Oc	onth n-49 b-49 r-49 r-49 n-49 n-49 l-49 g-49 p-49	Passengers 112 118 132 129 121 135 148 148 136	Month Jan-50 Feb-50 Mar-50 Apr-50 May-50 Jun-50 Jul-50 Aug-50 Sep-50	Passenge 115 126 141 135 125 149 170 170 158		20	CO3

Dec-50

140

Dec-49

118