Name:

Enrolment No:

	UPES				
	End Semester Examination, May 2024				
Progra	m Name: B. Tech-Mechanical Engineering	Semester	: IV		
Course	Time	: 03 hrs.			
Course	Max. Marks: 100				
Nos. of	page(s) : 02				
Instruc	tions: Attempt All Questions. One question from section B and C have	an internal	choice.		
Assum	e any missing data if required and mention it clearly.				
	SECTION A				
	(5Qx4M=20Marks)				
S. No.	Statement of question	Marks	CO		
Q1	What is the critical thickness of insulation? Explain it for spherical	4	CO1		
00	Coordinates.				
Q2	Discuss Grashof's Number and mention its applicability.	4	CO1		
Q3	What is lumped approximation. State its importance and implications.	4	CO2		
Q4	Discuss Fick's law of diffusion.	4	CO3		
Q5	Elaborate the rules applied for calculating the shape factor while measuring the radiative heat transfer.	4	CO4		
	SECTION B				
	(4Qx10M= 40 Marks)				
Q6	A composite cylinder is made of 6 mm thick layers each of two materials of thermal conductivities of 30 W/m°C and 45 W/m°C. The inside is exposed to a fluid at 500°C with a convection coefficient of 40 W/m ² °C and the outside is exposed to air at 35°C with a convection coefficient of 25 W/m ² K. Determine the heat loss for a length of 2 m and the surface temperatures. Inside diameter is 20 mm.	10	CO2		
Q7	Explain the mechanism of film condensation heat transfer on vertical surface.	10	CO3		
Q8	Engine oil at 80°C flows over a flat surface at 40°C for cooling purpose, the flow velocity being 2 m/s. Determine at a distance of 0.4 m from the leading edge the hydrodynamic and thermal boundary layer thickness. Also determine the local and average values of friction and convection coefficients. Take the following properties kinetic viscosity = 83×10^{-6} m ² /s, Pr= 1050. Thermal conductivity = 0.1407 W/m K.	10	CO3		
Q9	Deduce mathematical formulation for three-dimensional heat conduction equation with internal heat generation in cylindrical coordinates. OR	10	CO4		

D	educe mat	hematical	formulation for	r three-dimens	sional heat conducti	on					
eq	quation wit	th internal	heat generation	n in spherical o	coordinates.						
(2QX20M=40 Marks)											
Q10 Co in en te: ap K. sto sp	Consider a c n figure. Th missivity ε_1 emperatures pproximate L. Determin teady opera pecified ter	cylindrical ne top (sur $_1=0.8$ and s $T_1=700$ es a blackt ne the net r ation and nperatures	furnace with a face 1) and the $\varepsilon_2=0.4$, respect K and $T_2=5$ body and is ma ate of radiation explain how th.	radius and he base (surface ively, and are 500 K. The intained at a t heat transfer hese surfaces $T_1 = 700 \text{ K}$ $\varepsilon_1 = 0.8$ $T_3 = 400 \text{ K}$ = 500 K = 0.4	eight of 1 m, as sho e 2) of the furnace is maintained at unifor side surface closs remperature of $T_3=2$ at each surface dur can be maintained	wn has orm ely 400 ing 1 at	20	CO3			
Q11 Ai or to of 22 de W an m te	An economizer in a boiler has flow of water inside the pipes and hot gases on the outside flowing across the pipes. The flow rate of gases is 2,000 tons/hr and the gases are cooled from 390°C to 200°C. The specific heat of the gas is 1005 J/kg K. Water is heated (under pressure) from 100°C to 220°C. Assuming an overall heat transfer coefficient of 35 W/m²K, determine the area required. Assume that the air flow is mixed. ORWater flows at a velocity of 1 m/s through a pipe of 25 mm ID and 30 OD and 3 m length. Air at 30°C flows across the tube, with a velocity of 12 m/s. The inlet temperature of the water is 60°C. Determine the exit temperature. The thermal conductivity of the tube material is 47 W/m K.FluidDensityKinematic (kg/m³)Prandtl (kg/m³)Thermal (Mater 1.2)Water9900.5675*10-63.680.63965Air1.216.96*10-60.6990.02756							CO4			