Name:

Enrolment No:

UPES End Semester Examination, May 2024

Course: Analog and Digital Electronics Program: B. Tech Mechatronics Course Code: ECEG-2030 Semester: IV Time : 03 hrs. Max. Marks: 100

SECTION A (50x4M-20Morka)				
S. No.	(5Qx4M=20Marks) Attempt all the questions.	Marks	СО	
Q 1	An op-amp has a CMRR of 90 dB. If the common-mode gain is 0.01, calculate the differential gain.	4	CO2	
Q 2	Convert the following: i. (101100111) _{BCD} to Excess-3 code ii. (101100.1100) _{Gray Code} to Binary	4	C01	
Q 3	Calculate the output voltage if $V_1 = 300 \text{ mV}$ and $V_2 = 700 \text{ mV}$.	4	CO2	
Q 4	Describe the inverting and non-inverting op-amp using suitable configuration and derive the gain expression.	4	CO1	
Q 5	Simplify the Boolean function: $F(w, x, y) = \pi$ (1, 3, 4, 7) that has the don't-care conditions $d(w, x, y) = \sum (0, 2, 5)$	4	CO3	
	SECTION B			
	(4Qx10M= 40 Marks)			
	Answer any four questions	,		
Q 6	Compare and contrast voltage feedback and current feedback configurations in amplifier circuits.	10	CO3	
Q 7	Describe the internal block diagram and operation of the 555 timer IC. Explain how it can be configured as an astable multivibrator.	10	CO2	
Q 8	Determine the values of Current gain A _I , Ri, Voltage gain Av and Yo for a Common base configuration circuit, if the h-parameters are hfb = -0.95; hob= $0.45\mu A/V$; hib= 21. Ω ; hrb = 2.9×10^{-6} ; Ri=Rs=1K Ω ; RL=10K Ω .	10	CO4	
Q 9	Design a 4-bit Synchronous UP counter using JK flip flop and write down the steps involved in the designing process.	10	CO4	

Q10	Design a 4-bit ring counter using D flip-flops and explain the change in cycles through its states. Discuss the applications of ring counters in digital systems.	10	CO4
	SECTION-C (2Qx20M=40 Marks)		
	Answer any two questions		
Q 11	a. Design a JK flip-flop using SR flip flop. Also, derive the expression for the excitation table.b. Implement the 3-input full subtractor circuit using logic gates.	15+5	CO4
Q 12	a. Design and explain the operation of SIPO shift register.b. Design a sequence generator with the following sequence: 0-2-5-4-7.	10+10	CO4
Q 13	 a. Design a 4- bit Parallel adder circuit using suitable diagram. b. Calculate the output voltage of the given integrator Op-Amp. 	10+10	CO4