Name:

Enrolment No:

	LIDES		
	End Semester Examination, May 2024		
Course: B Tech (FSE/CE/SE)SemesterProgram: Strength of materialTimeCourse Code: MECH 2018Max. M		r: IV : 03 hrs. [arks: 100	
 Inst Attemp Draw n Please 	tructions: t all the sections. eat diagrams. Assume missing data if any. use the full three hours wisely. SECTION A		
	(5Qx4M=20Marks)	1	
S. No.		Marks	CO
Q 1	Choose the correct answer/answers: 1. The neutral axis of the cross-section a beam is that axis at which the bending stress is (A) Zero (B) Minimum (C) Maximum (D) Infinity 2. Principal planes are planes having (A) Maximum shear stress (B) No shear stress (C) Minimum shear stress (D) None of the above 3. After reaching the yielding stage while testing a mild steel specimen, strain (A) Becomes constant (B) Starts decreasing (C) Increases without any increase in load (D) None of the above 4. The torque transmitted by a solid shaft of diameter (D) is (where $\tau =$ Maximum allowable shear stress) (A) $\pi/4 \times \tau \times D^3$ (B) $\pi/16 \times \tau \times D^3$ (C) $\pi/32 \times \tau \times D^3$ (D) $\pi/64 \times \tau \times D^3$	4	CO1
Q 2	A simply supported beam of length 6 m, carries point load of 3 kN and 6 kN at distances of 2 m and 4 m from the left end. Find the support reactions.	4	CO1
Q 3	Briefly explain the knowledge you gain during material testing lab. Which experiment do you like most?	3+1	CO1

Q 4	Write a few applications of this subject "strength of material" in your specific branch of engineering.	4	CO1	
Q 5	Explain stress strain behavior concepts for ductile material under tensile loading.	4	CO1	
SECTION B				
	(4Qx10M= 40 Marks)			
Q 6	A boiler shell 200 cm diameter and plate thickness 1.5 cm is subjected to internal pressure of 1.5 MN/m ² . Calculate hoop stress and longitudinal stress.	5+5	CO4	
Q 7	S0 kN \downarrow 10 kN/m \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow	5+5	CO2	
Q 8	A solid steel shaft 6 m long is stressed at 80 MPa when twisted through 3° . Using G = 80 GPa, compute the shaft diameter. What power can be transmitted by the shaft at 20 Hz?	5+5	CO3	
Q 9	A cantilever of length 2.5m carries a uniformly distributed load of 16.4 kN per meter length over the entire length. If the moment of inertia of the beam = 7.95 \times 102 mm4 and value of E = 2 \times 105 n/ mm2, determine the slop and deflection at the free end.	5+5	CO3	
	SECTION-C			
	(2Qx20M=40 Marks)			
Q 10	Find the support reactions, draw the shear force and bending moment diagrams for the following beam loading: $\begin{array}{c} 80 \text{ kN} & 60 \text{ kN} \\ \hline & \downarrow C & \downarrow D \\ \hline & A & \downarrow C & \downarrow D \\ \hline & 4 & 1 & 1 & 2 \\ \hline & 2 & m & 1 & -5 & m & -1 & -3 & m & -1 \end{array}$	4+8+8	CO2	
Q 11	At a point in the structural member, the stresses are represented as shown in the figure.	8+6+6	CO4	

