Name:		W UPi	-S		
Enro	lment No:		TOMORROW		
		UPES			
_		nester Examination, May 2024			
5			emester		
			Гіте: 03 Max. Ma		00
	of page(s) : 2	1	viax. Ma	rks: 1	00
Instr		noice in section C. Use $\mu_0 = 4\pi \times 10^{-7}$ H	I/m and	$\epsilon_0 =$	
0.05		SECTION A			
C		Answer all questions.			
S. No.			Μ	arks	CO
Q 1	State the True/False.				
Υ.	(a) The concept of displacement current was a major contribution attributed to Maxwell.				
	(b) Electromagnetic waves travel faster in conductor than in dielectric.			4	CO1
	(c) In a good conductor, \vec{E} and \vec{H} are in time phase.				
	(d) For a lossless transmission line, the characteristic impedance does not				
0.2		quency of the transmission line.			001
Q 2	write the integral form of Maxw	ell's equations with their proper names		4	CO1
Q 3	_	f a medium. What is the value of the intrin	sic	4	CO2
	impedance of free space?			-	C02
Q 4	Define reflection coefficient	and transmission coefficient. What is	the		
	relationship between them?			4	CO3
0.5	Company the advantages and d	inducations of apprial apple and two			
Q 5	parallel transmission line.	isadvantages of coaxial cable and two	wire	4	CO4
		CECTION D	·		
Q 6	Obtain the wave equations	SECTION B verning the \vec{E} and \vec{H} fields in a source-	frac	10	000
×۷	medium with constitutive parameter		nee	10	CO2
Q 7	State the Ampere's circuital la	aw and express it in its differential for		10	001
	Demonstrate its inconsistency with time-varying situations. Explain Maxwell's		10	CO1	
0.0	contribution in reconciling it wit		50		
Q 8	Find the attenuation constant, and skin depth for copper at 10000 MHz and 50 MHz. The conductivity of copper is 5.8 x 10^7 S/m and $\mu = \mu_0 =$		50	10	CO2
	$4\pi \times 10^{-7}$ H/m.				
Q 9		is normally incident on an infinite loss	less		
	dielectric material having $\varepsilon = \varepsilon_0$ and $\mu = \mu_0$. If the incident wave is $\vec{E}_i =$				
	$10\cos(\omega t - z)\widehat{a_y} V/m.$, find:			10	
	(a) λ and ω of the wave in air and the transmitted wave in the dielectric			10	CO3
	medium. \rightarrow				
	(b) The incident \vec{H}_i field				
	(c) Γ and τ				

	SECTION C		
Q10	 (a) Sketch the equivalent circuit of a differential length Δz of a two conductors transmission line. Develop the general transmission line equation express them in phasor form. (b) Show that the propagation constant of a TEM wave propagating along an infinite transmission line is given by γ = √(R + jωL)(G + jωC) m⁻¹. Where L, R, G and C are the resistance per unit length, inductance per unit length, conductance per unit length and capacitance per unit length, respectively. OR Let us consider a y-polarized TEM wave propagating in the +z-direction along a uniform parallel plate lossless transmission line. Figure shows the crosssectional dimension of such a line and the chosen coordinate system. In the present case the appropriate phasor solution for the wave propagating in the +z direction is <i>E</i>(z) = <i>a</i>_y E_y = <i>a</i>_y E₀e^{-jβz} (a) Find the associated <i>H</i>(z) field. (b) Find the surface current density and surface charge density at upper conducting plate i.e. at y=d. (c) Develop a pair of time harmonic transmission line equations for phasors V(z) and I(z). 	20	CO4
Q.11	Derive the following general expression of the attenuation and phase constant for conducting media: $\alpha = \omega \sqrt{\frac{\mu\epsilon}{2}} \left[\sqrt{1 + \left(\frac{\sigma}{w\epsilon}\right)^2 - 1} \right]^{1/2} \text{ NP/m}$ $\beta = \omega \sqrt{\frac{\mu\epsilon}{2}} \left[\sqrt{1 + \left(\frac{\sigma}{w\epsilon}\right)^2 + 1} \right]^{1/2} \text{ rad/m}$	20	CO2