Name:

Enrolment No:

language.

UPES End Semester Examination, May 2024 Course: Computer Organization & Architecture S Program: B. Tech. (Electronics & Computer Engineering) Course Code: CSEG 2044		Semester: IV Time: 03 hrs. Max. Marks: 100		
Instruc	tions: Attempt all the questions.			
	SECTION A			
	(5Qx4M=20Marks)	1	1	
S. No.		Marks	CO	
Q 1	Differentiate RISC and CISC architecture.	4	CO1	
Q 2	Design D flip-flop using J-K flip flop.	4	CO2	
Q 3	Elucidate the significance of control unit in a digital computer. List its important functions while execution of assembly language program.	4	CO3	
Q 4	Differentiate strobe control and handshaking asynchronous data transfer techniques.	4	CO4	
Q 5	Design and implement 3 to 8 line decoder circuit.	4	CO2	
	SECTION B		1	
	(4Qx10M= 40 Marks)			
Q 6	Elucidate the significance of following instructions: (a) LDA (b) CLA (c) BSA (d) ION (e) SKI (f) EI (g) SHR (h) RET (i) CMP (j) TST	10	CO1	
Q 7	Design a sequence generator using D flip-flop to generate the sequence 101100110.	10	CO2	
Q 8	Explain microinstruction format and discuss the significance of each field. Write the symbolic microprogram for fetch routine in assembly	10	CO3	

Q 9 Explain ass Give a suita within the a What do un controller w	ociative memory with the help of a suitable block diagram. able example explaining how the argument data is searched ssociative memory. OR iderstand by direct memory access (DMA)? Explain DMA with suitable block diagram.	10	CO4	
SECTION-C (2Qx20M=40 Marks)				
Q 10(a) What computation $(C_i + D_i)$ w carry out th 1 through (b) Design a(a) Differen arithme(b) Explain micropu	do you understand by pipelining? In certain scientific ns it is necessary to perform arithmetic operation $(A_i + B_i) *$ with a stream of numbers. Specify a pipeline configuration to the task. List the contents of all registers in the pipeline for $i = 6$. and explain hardwired control unit of a digital computer. OR that a arithmetic pipeline and instruction pipeline. Design a tic pipeline for floating-point subtraction of two numbers: $X = 0.3235 \times 10^3$ $Y = 0.2365 \times 10^2$ the pipelining operation with the help of flow-chart. address sequencing for control memory in rogrammed control unit with a suitable diagram.	20	CO3	
Q 11 (a) A comp X 8. TI ROM. (i) I (ii) I (iii) (iii) (b) A 4-way is built usin of the physic the TAG field	Puter employs RAM chips of 256 X 8 and ROM chips of 1024 the computer system needs 2K bytes of RAM, 2K bytes of How many RAM and ROM chips are needed? Draw a memory-address map for the system. Give the address range in hexadecimal for RAM and ROM. The set associative cache memory unit with a capacity of 16 KB g a block size of 8 words. The word length is 32 bits. The size local address space is 4 GB. What are the number of bits for 1d?	20	CO4	