Name:

Enrolment No:

UPES End Semester Examination, May 2024

Course: Mass Transfer 1 Program: B. Tech Chemical Engg. Course Code: CHCE 2020

Semester: IV Time: 03 hrs. Max. Marks: 100

Instructions: (1) Answer ALL questions

(2)	Accuma	nnronriato	value of	missing	data	if (anti
(4)	Assume a	appropriate	value of	missing	uata,	11 6	шy

(3) Notations have their usual meanings

SECTION A (20Marks)

S. No.		Marks	СО					
Q 1	Discuss the concept of relative volatility and its significance.	4	C01					
Q2	Discuss the significance of tray efficiency in distillation. How does tray efficiency impact the separation performance of a distillation column?	4	C01					
Q3	Describe the concept of two film theory using a neat sketch the showing concentration profile.	4	C01					
Q4	Describe four examples of the occurrence of molecular diffusion in your day to life or in some industrial processes.	4	C01					
Q5	A student attempt to measure the diffusivity of A in air using Stefan tube apparatus. If the boiling point of A is only several degrees higher than the experimental temperature. Do you think that the pseudo-steady state assumption is valid in this case? Provide a quantitative explanation.	4	CO2					
SECTION B (40 Marks)								
Q6	A volatile organic compound (C ₆ H ₆) costing Rs. 50 a kg is stored in a tank 10.0 in diameter and open at the top. A stagnant air film 10 mm thick is covering the surface of the compound beyond which the compound is absent. If the atmospheric temperature is 25°C, vapor pressure of the compound is 150 mm Hg and its molar diffusivity 0.02 m ² / hr, calculate the loss in Rs./day.	10	CO3					
Q7	An Ethanol (A) –water (B) Solution in the form of stagnant film 2.0 mm thick at 293 K is in contact at one surface with an organic solvent in which ethanol is soluble and water is insoluble. At point 1 the concentration of ethanol is 16.8 wt % and the solution density is 972.8 kg/m ³ . At point 2 the concentration of ethanol is 6.8 wt % and the	10	CO2					

	solution density is 988.1 kg/m ³ . The diffusivity of ethanol is 0.74×10^{-9} m ² /s. Calculate the steady state flux N ₄		
	III 75. Calculate the steady state hux NA.		
Q8	A continuous rectification column is used to separate a binary mixture of A and B. Distillate is produced at 100 kg moles/hr containing 98 mole % of A. The mole of A in liquid and in the vapors, x and y respectively, from two adjacent ideal plates in the enriching section are as follows		
		10	602
	0.85 0.82	10	03
	0.56 0.78		
00	If the latent heat of vaporization is same for all mixtures and the feed is saturated liquid, find the reflux ratio.		
Q9	In a mass transfer apparatus operating at 1 atmosphere the individual mass transfer coefficients have the following values k _x = 22 kg-mol/m ² h, k _y = 1.07 kg-mol/m ² h. The equilibrium compositions of the gaseous and liquid phases are characterized by Henry's law, p* = 0.08 x 10 ⁶ x mm Hg. (a) Determine the overall mass transfer coefficients K _x and K _y . (b) How many times the diffusion resistance of the liquid phase differs from that of the gaseous phase?	10	CO2
	SECTION-C (40 Marks)		
Q10	It is desired to separate a mixture containing 42% heptane and 58% ethyl benzene by distillation at 760 mm Hg to produce a distillate containing 97% heptane and a residue containing 99% ethyl benzene. (a) With a reflux ratio of 2.5, how many equilibrium stages are needed for a saturated liquid feed and bubble point reflux using the McCabe- Thiele method? (b) What is the minimum reflux ratio required? (c) How many equilibrium stages are needed at total reflux?	40	CO4

(d) Identify the feed location and find the actual number of plates if the overall efficiency is 60%.												
Equ syst	ilibri æm a	um dat t 760 m	a: the v ım Hg	apor lio	quid eq	uilibria	a for he	ptane-	ethyl b	enze	ne	
x	0	0.233	0.428	0.514	0.608	0.729	0.814	0.904	0.963	1.0		
у	0	0.08	0.185	0.251	0.335	0.489	0.651	0.788	0.914	1.0		
hero resp	e, y Dectiv	and x vely.	are n	nole fi	raction	s hept	ane in	i vapo	r and	liqu	id	