Name:										ES		
Enrol	nent No:								UNIVERSITY OF T	OMORROW		
UNIVERSITY OF PETROLEUM AND ENERGY STUDIES												
End Semester Examination, May 2024												
Programme Name: B.Tech (Chemical Engineering) Semester :									IV			
								Duration :				
		HCE 2	2019						Max. Mark	ks: 100		
Nos. of page(s) : 02												
Instructions: In case of data missing make necessary assumptions												
S.No	Section A (5X4=20M) (Attempt all questions)										СО	
Q 1	Define absolute error and truncation error.										CO1	
Q 2	Differentiate between bracketing and open methods to solve non-linear algebraic equations.									4 M	CO2	
Q 3	Use the Taylor se	eries m	ethod to	find $y(0)$	0.25) co	onsider	ing upto	third de	egree term, if $y(x)$			
	satisfies $\frac{dy}{dx} = x^2 - y^2$, $y(0) = 1$.									4 M	CO4	
Q 4	Establish an expression for Newton's 1 st order interpolating polynomial.									4 M	CO3	
Q 5	What are the differences between Dirichlet and Neumann boundary condition?									4 M	CO4	
	Section B (4X10=40M) (Attempt all questions)											
Q 6	Find the square root of 10 and correct to three decimal places, by using Newton-Raphson iteration formula.											
	OR										CON	
											CO2	
	Solve $x_1 + x_2 - x_3 = -3$, $6x_1 + 2x_2 + 2x_3 = 2$, and $-3x_1 + 4x_2 + x_3 = 1$ using Gaus Jordon without partial pivoting.											
Q 7	Apply Trapezoidal rule to evaluate the value of $\int_{0.2}^{1.4} (sinx - logx + e^x) dx$ with n=10.									10 M	CO3	
	TT T • •			1.	(* 1.1	1	<u> </u>	4.0	·C.1 1 0			
Q 8	Use Lagrange's interpolation formula to find the value of y when $x = 12$, if the values of x											
	and y are given below:											
		х	11	13	14	18	20	23		10 M	CO3	
		у	25	47	68	82	102	124				
					<u> </u>		I	1]			

Q 9	Apply Liebmann's method to determine the temperature distribution of the square heater plate (Fig. 1). Use a relaxation factor of 1.2. The dimensions of the plate is 6 cm × 6 cm. Us at-least two interior nodes in both horizontal and vertical directions. Note that the material is aluminum with specific heat, $C = 0.2174$ cal/(g · °C) and density, $\rho = 2.7$ g/cm ³ . The thermal conductivity, $k' = 0.49$ cal/(s · cm · °C), $\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} = 0$ 100 °C 100 °C Fig 1: Schematics of the flat plate with boundary conditions.	se al	CO4
	Section C (2X20=40M) (Attempt all questions)		
Q 10	Using LU decomposition method Find A^{-1} if $A = \begin{bmatrix} 1 & 3 & 2 \\ 2 & 4 & -6 \\ 1 & 5 & 3 \end{bmatrix}$	20 M	CO2
Q 11	Using Euler's, Midpoint, Heun's and analytical method solve $\frac{dy}{dt} = yt^2 - 1.1y$ over the interval from t=0 to 2 with a step size of 1. The initial condition is y(0)=1. Display all you results on the same graph.		CO3