Name: Enrolme	ent No:							
UPES End Semester Examination, May 2024 Programme Name: B. Tech Chemical Engg. Semester : IV Course Name : Chemical Engineering Thermodynamics 2 Time : 3 hrs Course Code : CHCE2008 Max. Marks: 100 Nos. of page(s) : 02 Instructions: (1) This is an OPEN BOOKS and OPEN NOTES Examination. (2) Assume the appropriate value of missing data, if any. : (3) The thermodynamic terms have their usual meanings (Answer all questions)								
S. No.		Marks	CO					
1.	A binary mixture of dioxane (1) -steam (2) forms and azeotrope at 345 K during the separation of the mixture by distillation. The activity coefficient of both the components can be calculated as $\overline{G_1^E} = Ax_2^2 = RT \ln \gamma_1$ $\overline{G_2^E} = Ax_1^2 = RT \ln \gamma_2$ The saturation vapor pressures are given as, $P_1^{sat} = 15.6$ kPa and $P_2^{sat} = 12.4$ kP Calculate the value of A, if azeotropic composition is $x_1 = 0.51$.	ne 20	CO3					
2.	Three students from the Department of Chemical Engineering at UPES Dehrad working in the research lab conducted experiments on a binary hexane (1)-water (system to gather data on activity coefficients. After conducting multiple experimer under consistent temperature and pressure conditions, they obtained values for t activity coefficients of hexane (1)-water (2) as follows $\gamma_1 = \exp[x_2^2(2x_1+0.5)]$ and $\gamma_2 = \exp[x_1^2(-2x_2+1.5)]$. As a chemical engineer, could you evaluate the accuracy of their estimation Calculate the excess Gibbs free energy of the mixture containing 40 mole % of hexa at 335 K.	2) its ne 20 s?	CO4					

3.	chemical re thermodyna challenges? and non-ide and elabora	eaction eo amic mod [Hint: I ar eal behavio ate how d	quilibria in deling and n providing y or. You are exp	nging aspects industrial ch experimental ou 2 challeng pected to prov ress them us techniques.	emical proce techniques ing aspects, r ide 2 more ch	esses? How address nultiple reac nallenging as	can these ctions spects	5+20	CO1, CO4
4	(2) system. T data, obtai $t, x_1, y_1, P_1^s, P_2^s, I$ constants A a t(deg C) 96.9 68.2 65.1 64.5 The van Laa $\frac{G^E}{RTx_1x_2} = \frac{A}{\left(\frac{A}{B}\right)}$ The Antoine	The system f in VLE $\ln \gamma_1, \ln \gamma_2, P$, and B from x_1 0.015 0. 0.426 0. 0.747 0. 0.914 0. ar Model is A $x_1 + x_2$	follows van La data (mak RTx_1x_2/G^E) and the plot. The $\frac{y_1}{.133}$.747 .838 .921 s given by,	a at 760 Torr ar model of act ar model of act a table d plot RTx_1x_2/d following data $\left[\log_{10} P = A - \frac{1}{t+1}\right]$ C 239.726 227.6	ivity coefficien for the G ^E vs x ₁ and is available fo	nts. From the following find the van or the system,	given data Laar	15+20	CO2, CO4