Name:

Enrolment No:

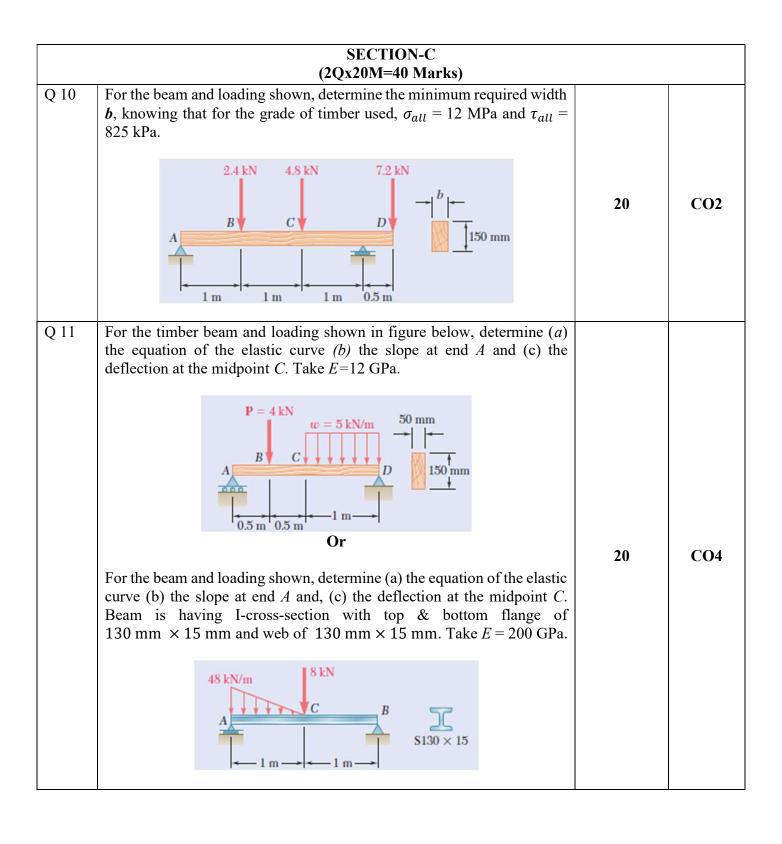
UPES

End Semester Examination, May 2024

Course: Mechanics of Materials

Program: B. Tech. Aerospace Engineering

Course Code: MECH 2042


Semester: IV

Time : 03 hrs.

Max. Marks: 100

SECTION A (5Qx4M=20Marks)					
S. No.		Marks	СО		
Q 1	Define the section modulus of any beam cross-section and its significance.	4	CO1		
Q 2	Describe with the help of sketch of the state of stress in any thin walled cylindrical and spherical pressure vessel.	4	CO1		
Q 3	Explain the flexural rigidity and the torsional rigidity of any circular shaft.	4	CO1		
Q 4	Derive the relation between the shear strain and angle of twist for the slender circular shaft subjected to twisting moment applied on its end.	4	CO1		
Q 5	Define the state of stress and state of strain on infinitesimal element from any stressed body.	4	CO1		
Q 6	(4Qx10M= 40 Marks) A cast-iron machine part is acted upon by 3 kN.m couple as shown in figure about the lateral axis of member. Knowing that Young's elastic				
	figure about the lateral axis of member. Knowing that Young's elastic Modulus = 165 GPa and neglecting the effect of fillets, determine (a) the maximum tensile and compressive stresses in the casting and (b) the radius of curvature of the casting.				
	M = 3 kN · m 20 mm 40 mm 30 mm	10	CO2		
Q 7	The assembly consists of two steel rods and a rigid bar BD . Each rod has a diameter of 0.75 in. If a force of 10 kip is applied to the bar, determine the vertical displacement of the load and angle of tilt of the bar. Take Young's modulus of steel rod $E = 29 \times 10^3$ ksi. and 1 ft = 12 in.	10	CO3		

	$ \begin{array}{c} C \\ \hline C \\ \hline A \\ \hline S ft \\ \hline B \\ \hline -1.25 \text{ ft} \\ \hline 0.75 \text{ ft} \\ \hline 1 \text{ ft} \\ F \end{array} $		
Q 8	Wall thickness of cylindrical shell of 500 mm internal diameter and 2 m long is 8 mm. If the shell is subjected to internal pressure of 1.5 MPa, determine (a) circumferential stress (b) longitudinal stress (c) maximum shear stress and, (d) change in length, diameter, and volume of the shell. Take Young's modulus of elasticity $E = 200$ GPa and $v = 0.3$.	10	CO3
Q 9	The aluminium rod AB (G = 27 GPa) is bonded to the brass rod BD (G = 39 GPa) as shown in Fig. 9(a) . Knowing that portion CD of the brass rod is hollow and has an inner diameter of 40 mm, determine the angle of twist at A .		
	$T_{B} = 1600 \text{ N} \cdot \text{m}$ 36 mm $T_{A} = 800 \text{ N} \cdot \text{m}$ $T_{A} = 800 $	10	CO2
	Fig. 9(a) Or Fig. 9(b)		
	The steel shaft has a diameter of 60 mm and is fixed at its ends A and B as shown in Fig. 9(b) . If it is subjected to the torques shown in above figure, determine the absolute maximum shear stress in the shaft. Take Modulus of rigidity $G = 80$ GPa.		

