Name:

Enrolment No:

UPES End Semester Examination, May 2024 hysical methods of Exploration

Course: Geological and Geophysical methods of Exploration Program: B.Tech APE UP Course Code: PEGS 2035 Semester: IV Time : 03 hrs. Max. Marks: 100

Instructions: Answer all questions. However, there is internal choice in Q9 and Q11

	SECTION A (5Qx4M=20Marks)		
S. No.		Marks	СО
Q 1	Describe the role of Bouguer anomaly in gravity data reduction	4	CO1
Q 2	Define 'Induced magnetization'	4	CO1
Q 3	A formation is having matrix density 3 gm/cc, fluid density of 1 gm/cc and porosity of 20%. Find the bulk density of formation	4	CO2
Q 4	Explain the term vitrinite reflectance	4	CO2
Q 5	Discuss the conditions necessary for oil accumulation	4	CO2
	SECTION B		
	(4Qx10M= 40 Marks)		
Q 6	Explain the various method of gravity anomaly analysis for separating local anomaly from regional anomaly.	10	CO2
Q 7	Analyze different types of kerogens and their potential in Oil and gas formation.	10	CO3
Q 8	Evaluate the potential application of gravity, magnetic, seismic and electrical resistivity methods in subsurface investigations of mineral and hydrocarbon mapping. OR Examine the working principle of proton precession magnetometer	10	CO3
Q 9	Calculate the effect of a 20 m change in elevation on the arrival times of reflections, assuming a layer velocity of 3000 m/s and no weathering layer	10	CO4
	SECTION-C		
	(2Qx20M=40 Marks)	_	
Q 10	Analyze the seismic source and detector for ocean survey.	20 (8+12)	CO4

	distance (m) 0 5 10 20 40	time (milli second) 0 11 26 49			
	5 10 20	11 26			
	10 20	26	-		
	20				
		49	-		
	40				
·		65	4		
	60	71			
	80	76	4		
	100	83	4		
l	120	88]		
400 m		v ₁ = 3.1 km/s ρ ₁ =2700 kg/m ³			
4		INTERFACE A			
F		$v_2 = 4.5 \text{ km/s}$		20	CO4
900 m	A, A',	ρ ₂ =2700 kg/m³			
	_↓: 	INTERFACE B			
		v ₃ = 6.8 km/s ρ ₃ =2700 kg/m ³			