Name:

Enrolment No:

UPES End Semester Examination, May 2024

Course: Reservoir Engineering Program: B. Tech Applied Petroleum Engineering Upstream Course Code: PEAU 2013 Semester: IV Time : 03 hrs. Max. Marks: 100

Instructions:

All Questions are Mandatory.

SECTION A (5Qx4M=20Marks)

S. No.		Marks	СО	
Q 1	Propose factors that influence the selection of an appropriate reservoir drive mechanism.	4 M	CO2	
Q 2	Investigate a scenario with specific reservoir temperature and pressure and predict which type of reservoir fluid (oil or gas) would be more likely present.	4M	CO3	
Q 3	Explain the concept of permeability and its units (e.g., Darcy, millidarcy). How does permeability relate to the ease of fluid flow through a rock?	4M	CO1	
Q 4	Analyze the possible reasons for reservoir fluid samples collected from a well indicating a decrease in gas-oil ratio (GOR) over time.	4M	CO4	
Q 5	A core is 3 <i>in</i> . long and 2 <i>cm</i> in diameter. When the core is maintained at an upstream pressure was 29.4 <i>psia</i> and downstream pressure was 14.7 <i>psia</i> , flow rate of 10 <i>cm</i> ³ / <i>sec</i> of air ($\mu = 0.018$ cp) was recorded at downstream pressure. Calculate the permeability of the core in Darcys.	4M	CO2	
SECTION B				
(4Qx10M= 40 Marks)				
Q 6	a) Critically analyze the environmental impact of various reservoir drive mechanisms, including the potential risks associated with water and gas injection techniques.b) Evaluate the sustainability of different drive mechanisms in the context of minimizing carbon emissions and water usage.	5M +5M	CO4	
Q 7	Illustrate how reservoir fluid properties such as composition, density, viscosity, and formation volume factor influence the behavior of fluids in a reservoir.	10M	CO3	
Q 8	Given a core sample from a reservoir, describe the laboratory tests you would perform to evaluate its suitability for hydrocarbon production.	10M	CO2	

Q 9	Illustrate the concept of reservoir wettability and the different wettability states (water-wet, oil-wet, mixed-wet). How does wettability affect the distribution of fluids within the rock pores?	10M	CO3		
	(OR)				
Q 9	Analyze the impact of capillary pressure and capillary hysteresis on multiphase flow in reservoirs. How do these phenomena affect reservoir performance, recovery efficiency, and fluid displacement processes?	10M	CO3		
SECTION-C					
	(2Qx20M=40 Marks)				
Q 10	a) Compare and contrast the phase diagrams of a single-component hydrocarbon system and a multi-component hydrocarbon system. Highlight the key differences in terms of phase boundaries critical	10M	CO3		
	points, and phase behavior complexities.	+			
	b) Illustrate different techniques used for hydrocarbon reservoir fluid		0.00		
	sampling, and how they vary based on the type of reservoir and fluid	10M			
	composition.				
Q 11	The following data are given for the Hout Oil Field:		CO4		
	Area $= 26,700$ acres				
	Net productive thickness $= 49$ ft				
	Porosity = 8%	20M			
	Average Sw = 45%				
	Initial reservoir pressure, $p_i = 2980$ psia				
	Abandonment pressure, $p_a = 500 \text{ psia}$, $P_a \text{ of } p_i = 1.68 \text{ bbl/STP}$				
	B_0 at pi = 1.06 007 STB B at pa = 1.15 bbl/STB				
	S_{-} at pa = -34%				
	S_{sr} after water invasion = 20%				
	Calculate the following:				
	1) Initial oil in place				
	2) Oil in place after volumetric depletion to abandonment pressure				
	3) Oil in place after water invasion at initial pressure				
	4) Oil reserve by volumetric depletion to abandonment pressure				
	5) Oil reserve by full water drive				
	6) Interpret your answers				