Name:

Enrolment No:

UPES End Semester Examination, May 2024 **Course:** Python Programming Semester: IV **Program:** B. Tech (Applied Petroleum Engineering, Upstream) Time : 03 hrs. Course Code: CSEG2039 Max. Marks: 100 Instructions: (a) This is a closed book exam. Possessing a mobile phone and any other communication devices during the exam is strictly prohibited. (b) Avoid hard coding. (c) Use correct indentation SECTION A $(50 \times 4M = 20 \text{ Marks})$ S. Statement of the question Marks CO No. Q 1 Write a python code to (a) define a list with named lst containing the following four elements below: 4 **CO1** 90 crude oil 3.14 sour water (b) define an object named second that belongs to an empty class named, time Q 2 Write a python code to (a) define a dictionary named water that can store the **CO1** following properties of water with density (1000), viscosity (0.01) and specific 4 CO3 heat (4.186), (b) find all the keys of the water, (c) modify the viscosity to 0.05 Write a python code to (a) define a complex number (named vector) with 2 and 5 Q 3 as the real part and imaginary part, respectively, (b) define a user define function **CO1** 4 named sqr that returns the square of an input number, (c) find the square of the **CO3** number 625, using the function sqr Write a python code to create (a) identity matrix (20 rows, 20 columns), and (b) a Q4 matrix (1 row, 20 columns) that contains only zero. **CO1** (c) print the following words in its exact form as output containing all alphabets 4 and special characters shown in bold fonts. "python's \n code" Write a python code to plot the data shown in **Table 1**. The exact final output is Q 5 **CO1** 4 shown in Fig. 1 **CO3 SECTION B** (4Q x 10M = 40 Marks) Q 6 Write a python code to (a) define a function named square that draws a square of any desired length, orientation, and can be placed in desired location (x, y), (b) **CO1** define a function named **triangle** that draws an equilateral triangle of any desired CO₂ 10 length, orientation, can be placed in desired location (x, y), (c) use the two functions **CO3** (square and triangle) to draw the image shown in Fig. 2. All the squares and **CO4** triangles are of length 100 units.

Q 7	 Write a python program to define an array (named mat1) contain (elements of 1st row), 4 5 6 (elements of 2nd row) and (elements of 3rd row). (b) Use slicing, to create a variable named mat2 that only contain mat1 which are bold and italics. 	ing 1 2 3 7 8 9 s the elements of	10	CO1 CO2 CO3
Q 8	 (a) Write python codes to define a class named gas. The class should contain the following attributes: Name of gas, Molecular weight, boiling point in °C, density in g/L, specific gravity (b) Create five instances of the class gas. The name and their properties are given in Fig 3. (c) Write lines of codes to identify the gas with highest molecular weight. (d) Write lines of codes to identify the gas with lowest density 			CO1 CO2 CO3 CO4
Q 9	Write python code to define a function (named one_d) that converts a nested list and return a one-dimensional list. Include lines of code to test your function with the input arguments given in Table 2 . In case the function is correct, you should obtain the exact return value as in Table 2 . OR Write a python code to print the following pattern of cone exactly as shown.	c co con cone	10	CO1 CO2 CO3 CO4
	SECTION-C (2Q x 20M = 40 Marks	5)		
Q 10	0Write a python program to create three numbers of classes, named as A, B, and C.B contains a method to find the sum of number series (such as 1, 2, 3, 4, 5, 6, and many more). While, A contains method to find the sine of angle (in degree). While, class C do not have any such methods defined. $\frac{3+4+5+6+7+8+9+10}{\sin (30)}$ Write a python program to evaluate the above expression only using the object that belongs to class C. Use appropriate names of your choice.ORImagine that a file named solution.csv is stored in IDLE working directory or folder. The data in rows and columns are shown in Table 1. Write a python program to find the concentration of acetic acid for all samples.		20	CO1 CO2 CO3 CO4
Q 11	$(C = \frac{1}{volume \ of \ acetic \ acid + volume \ of \ water})$ Analyze the python codes below to predict the outputs: (2 marks of a cetic \ acid + volume \ of \ water)(i) print(5 // 3)Output:	each)	20	CO1 CO2 CO3

(v) water = []		
water.append("boil")		
print(water)	Output:	
(vi) word = "ab"		
for i in word:		
<pre>print("welcome {}".format(i))</pre>	Output:	
(vii) print(len("python"))	Output:	
(vii) a, b, c, $d = 1, 2, 3, 4$		
$print(d > c^{**}b)$	Output:	
(viii) print($c > b$ or $a > d$)	Output:	
(ix) print(5 in [7.675, "float", 5])	Output:	
(x) print(type({1, 2, "hello"}))	Output:	

Table 1: Sample of acetic acid and watermixed at different volume ratios.

Sample	acetic acid (ml)	water (ml)
А	1	5
В	2	4
С	3	3
D	4	2
Е	5	1

Fig 1: Expected output of the graph

Table 2: Input arguments and its corresponding expected output when we print.

Input arguments	Expected output	
[[1], [2], [3], [4], [5]]	[1, 2, 3, 4, 5]	sim 001 30° 45° 10° 60°
[[1, 2], [3, 4], [5, 6, 7, 8]]	[1, 2, 3, 4, 5, 6, 7, 8]	Fig. 2: Length and orientation of triangles and squares

	Molecular weight	Boiling point 1 atm °C (°F)	Density at 60 °F (15.6 °C), 1 atm		
Gas			g/l	Relative to air=1	
Methane	16.043	-161.5 (-258.7)	0.6786	0.5547	
Ethylene	28.054	-103.7 (-154.7)	1.1949	0.9768	
Ethane	30.068	-88.6 (-127.5)	1.2795	1.0460	
Propylene	42.081	-47.7 (-53.9)	1.8052	1.4757	
Propane	44.097	-42.1 (-43.8)	1.8917	1.5464	

Fig 3: Properties of various gases.