Name					
Enrolment No:					
UPES End Semester Examination, May 2024 Programme Name: B. Tech Mechatronics, Mechanical, and ADE Semester: IV					
Course Name:Strength of materialsTime:Course Code:MECH 2018Max. IInstructions:Attempt all the questions as directedAssume suitable data if missing			00		
SECTION A					
S. No.	Statement	Marks	СО		
Q 1	Differentiate between thin cylindrical, and thick cylindrical pressure vessels.	4	CO1		
Q 2	A thin tyre of steel is to be mounted on to a rigid wheel of 1.2 m diameter. Determine the internal diameter of the tyre if the hoop stress is limited to 120 MP Take E=210 GPa.	r. a. 4	CO2		
Q 3	Prove that the toughness is the area under the stress-strain diagram up to the failu point.	^{re} 4	CO1		
Q 4	Derive the relationship between bending moment and shear force in a beam.	4	CO1		
Q 5	Discuss the analysis of shaft in series and parallel, subjected to pure torsion moments.	^{al} 4	CO1		
	SECTION B				
Q 6	At a point in a strained material, the principal stresses are 100 N/mm^2 (Tensile) at 40 N/mm^2 (Compressive). Determine the direction and magnitude in a plan inclined at 60^0 to the axis of major principal stress. Calculate the maximum intensity of shear stress in the material at the point.	10 10	CO2		
Q 7	An- I section beam 350 mm x 150 mm has a web thickness of 10 mm and a flang thickness of 20 mm. If the shear force acting on the section is 40 kN, find the maximum shear stress developed in the I-section.	ge le 10	CO2		

Q 8	A cylindrical shell is 3 m long; 1 m in diameter and the thickness of metal is 10 mm. It is subjected to an internal pressure of 150 N/cm ² . Calculate the change in dimensions of the shell and the maximum intensity of shear stress induced. Given $E=200$ GPa and Poisson's ratio =0.3.	10	CO4
Q 9	The maximum allowable shear stress in a hollow shaft of external diameter equal to twice that of internal diameter, is 80 N/mm ² . Determine the diameter of the shaft if it is subjected to a torque of 4 x 10^6 N-mm and a bending moment of 3 x 10^6 N-mm. OR Two shafts of the same material and same lengths are subjected to the same torque. If the first shaft is of a solid circular section and the second shaft is of hollow circular section whose internal diameter is 2/3 of the outside diameter. Compare the weights of the shafts.	10	CO3
	SECTION-C		<u> </u>
Q 10	Develop the theory of simple bending clearly stating the assumptions. Derive an expression for the following bending equation with usual notations. $\frac{M}{I} = \frac{\sigma}{y} = \frac{E}{R}$ OR A simply supported beam of T-section cross section of size 150 mm wide and 250 mm deep and, 30 mm thick carries a uniformly distributed load of w kN/m over entire span of 4 m. A concentrated load 1 kN is acting at 1.2 m from the left support. If the maximum bending stress in the beam is not to exceed 40 N/mm ²	20	CO3
	then find the load w.		