	•	m	•
1.7	и	m	•

Enrolment No:

UPES End Semester Examination, May 2024

Course: Machine Vision Applications for Vehicle Program: B.Tech. Automotive Design Engineering

Course Code: MECH2053

Semester: 4 Time: 03 hrs. Max. Marks: 100

Instructions:

- 1) This is a MATLAB based test and the duration of the test is 3 hours.
- 2) A student could refer to the MATLAB documentation section for help. Usage of AI based interactive models are prohibited.
- 3) The data for each question will be available in the computer allotted for each student. The name of each data is given in the respective question.
- 4) Please read the questions carefully and write your program in the allotted MATLAB client.
- 5) At the end of the test, take a print of the program written along with the obtained output for each question.
- 6) Both program and output of each question must be attached in the provided answer sheet. Additional time will be given to execute Instruction (6).

SECTION A (50x4M=20Marks)

S. No.		Marks	CO
Q 1	Q 1 Distinguish between supervised and unsupervised learning in the domain of machine learning?		CO1
Q 2	What are Support Vector Machines (SVMs) in Machine learning?	4	CO2
Q 3	Describe the principle of K-Nearest Neighbors algorithm?	4	CO2
Q 4	Explain the concept of data normalization and state the reason why data is normalised before processing?	4	CO1
Q 5	List down the steps involved in computing the velocity of a moving object when the instantaneous 3D position coordinates of objects are given?	4	CO3
	SECTION B		
	(4Qx10M= 40 Marks)		1
Q 6	Given data name: Q6_ Population_of_states_Vs_Accidents.mat		

	SECTION-C (2Qx20M=40 Marks)		
	Write a MATLAB program to reverse a string and replace the letter on the least and most significant index to "+" to "*" symbol, respectively.		
	Or	10	CO2
	position (1,2) from all frames.	Or	Or
Q 9	For the given input data, write a MATLAB program to convert the video into frames. Additionally, compute the mean intensity of the pixel at	10	CO2
0.0	Given data name: Q9_Option_1_video.mp4		
Q 8	Given data name: Q8_Circles.png Develop a MATLAB program to read the input image and determine the diameters of three distinct circles using Image tool.	10	CO3
	(b) Plot a neat histogram with proper labels indicating the average mark scored by the students along with the standard deviations (1sig, 2 sig and 3 sig) of the average mark obtained.		
	For the given normal distribution of marks scored by 100 students in machine vision course, (a) Compute the average mark and standard deviation of the distribution.	10	CO1
Q 7	Given data name: Q7_Students_Marks_In_Machine_Vision.mat		
	(b) Additionally, embed the equation of the best fit line in a scatter plot.		
	(a) Illustrate the application of linear regression analysis for the given data. Explain how a best fit line is estimated for the given set of input and output variable by plotting the best fit line for the given data.	10	CO1

Q 10	 Given data name: Q10(a)_to_Q10(c)_Test_data_Img_Comp.png Demonstrate the application of image compression using SVD for the given test image. a) Plot the cumulative sum of eigen values (sigmas) to explain how a high dimensional data could be represented using minimal columns of eigen vectors obtained from the process of SVD. b) Furthermore, display the compressed image for the following 3 cases: (a) rank =10; (b) rank =50; (a) rank =85. c) Save the compressed image and show that the space occupied in bytes is significantly less than the input image. 	7.5 + 7.5 +5	CO2
Q 11	Given data name: Q11_Ball_Tracking_Video.mp4 For the given input data (Q11_Ball_Tracking_Video.mp4), track the moving ball in the video by performing mathematical operations of mean and subtraction of the video frames. Or	20	603
		20	CO3
	Given data name: Q11_Adelaide_Housing.mat		
	The 14 th column in the given data indicate the price of individual apartments in Australian dollar. Also, the columns (from 1 to 13) are the parameters determining the final price of an apartment. Please answer the question given below using the data Q11_Adelaide_Housing.mat.	& 20	& CO3
	(a) Using singular value decomposition (SVD) technique, train and build a model that would predict the cost of a new apartment.		
	(b) Compute the cumulative sum of sigmas to show the percentage amount of information hidden in the first 4 columns of the sigmas (or eigen values).		