Name:

Enrolment No:

UPES End Semester Examination, May 2024

Course: Introduction to MATLAB Programming **Program:** B.Sc. Physics **Course Code:** MATH 2034K

Semester: IV Time: 03 hrs. Max. Marks: 100

Instructions:

SECTION A (5Qx4M=20Marks)

S. No.		Marks	СО	
Q 1	Define different types of concatenation and illustrate its implementation in MATLAB. Determine the output of: $A = [10 \ 20 \ 30; \ 60 \ 70 \ 80]; A(3:4,4:5) = [2 \ 3; \ 4 \ 5]$	2+1+1	CO1	
Q 2	Discuss any two ways to define colour while plotting in MATLAB. Write a MATLAB code to plot the complex roots of unity: $z^n = 1 \forall n$.	2+2	CO2	
Q 3	Define mesh and surf plots in MATLAB. Write the MATLAB code to plot the function that characterizes the shape of the surface of water right at the moment a stone enters the water (<i>it is not just a simple sinusoidal function</i>) in three-dimensions.	2+2	CO2	
Q 4	 Discuss the output for the following two codes: i. x = linspace(-5,5,100); y = linspace(-5,5,100); for i = 1:4 Z = sin(X + i) + sin(Y + i); surf(X, Y, Z, 'FaceAlpha', 0.2 * i); hold on; end ii. x = linspace(-5,5,100); y = exp(x); semilogx(x, y); semilogy(x, y); 	2+2	CO2	
Q 5	Discuss the residue command in MATLAB. Write a MATLAB code for determining the conditions when residue(residue(b_1, a_1) + residue(b_2, a_2)) is exactly equal to $\frac{b_1}{a_1} + \frac{b_2}{a_2}$, where $b(s)/b_i(s)$ and $a(s)/a_i(s)$ are polynomials of independent variable <i>s</i> . (<u>Hint</u> : Use the nested residue command for a single (<i>b</i> , <i>a</i>) and see what you get)	2+2	CO3	
SECTION B				
0.6	(4QX10M = 40 Marks)			
	function and the symfun function in MATLAB. Provide the MATLAB code for the function $f(x) = \tan^{-1}\left(\frac{1}{x+1}\right)$ using both.	3+3+4	CO4	

	Describe how symbolic functions can be evaluated at specific points using the subs function in MATLAB. What will be the output of $subs(@(x) tan(x), pi/2) and subs(@(x, y)exp(2 * x + y), [3,4,5])?$		
	Illustrate the usage of MATLAB's symbolic operations for differentiation and integration. Debug the following code:		
	$\operatorname{diff}\left((a(x)\exp\left(\exp\left(\exp\left(x^{2}\right)\right)\right)) + \operatorname{diff}(a(x,y)\sin(13*y+pi*x),y)\right)$		
	$- \operatorname{int}(@(x) 1/x^2, x^2, 2, 3)$ What would be the output of the corrected code?		
Q 7	Define two ways each, to undertake conditional and iteration statements in MATLAB. In a physics experiment, each particle exhibits motion with		
	Constant velocity, uniform acceleration, or simple harmonic motion (SHM). Given data representing particle positions at different time intervals, write a MATLAB code for classification of each particle's motion using a switch statement. If we had considered the dataset for a pendulum, while it primarily displays SHM, its acceleration due to gravity is approximately uniform near the equilibrium position. Write a MATLAB code using nested loops to determine such cases.	4+4+2	CO3
Q 8	Write a MATLAB code to simulate the motion of a simple pendulum consisting of a mass <i>m</i> attached to a string of length <i>L</i> in a uniform gravitational field, with the relevant parameters being gravitational acceleration <i>g</i> , initial angle θ_0 , and initial angular velocity ω_0 . In the program, illustrate with instances, numerical integration (using ode45) to solve the differential equation for the pendulum's motion for an assumed time interval, updating the angle and angular velocity at each time step. Plot in MATLAB θ vs. time and discuss how changes in the initial conditions can affect the pendulum's motion.	5+5	CO2
Q 9	 Discuss the significance of the MATLAB command window and workspace window in a MATLAB session. Describe the process of defining variables using MATLAB, including the assignment operator and built-in elementary mathematical functions. Illustrate how can one manage workspace variables effectively using commands like who and whos. Outline the steps to quit a MATLAB session properly. Explain the process of creating arrays in MATLAB using built-in commands such as ones, eye, and zeros. Discuss arithmetic operations (addition, subtraction, multiplication) with arrays and the use of the transpose operation. Illustrate how to find the determinant, inverse, eigenvalues, eigenvectors, and 	5+5	CO1

addressing array elem	nents and the colon operator's role in array manipulation.		
Highlight built-in fur	nctions for handling array properties.		
	OR		
Explain the structure and utility of script files in MATLAB, including the			
creation, saving, and	execution of script files. Discuss the concept of		
MATLAB Path and t	he distinction between Global and Local variables.		
Explain how to creat	e and utilize global variables, and demonstrate the usage		
of input, disp, and fr	printf commands for output.		
Degenites the structure	a of a function file including the function definition line		
input and output anou	monte III line, help text lines, and the function hedy		
Digeneration output argu	of local and global variables within function files		
Discuss the handling	of local and global variables within function files.		
command window B	rovide examples of simple functions and compare		
function files to serin	t files. Discuss the concept of inline functions, with a		
brief illustrative even	and a selection of the concept of thinks functions, with a		
oner musurative exam	ipie.		
	SECTION-C		
	(2Qx20M=40 Marks)		
d d	Physics is often about formulating new laws based on		
	observations that show divergence from behavior		
	expected of established laws. In a hypothetical		
(1) 010	scenario, let us say, that in the study of an asteroid		
	post-impact using interactions of samples with certain		
0.0	polycyclic aromatic hydrocarbons (PAHs),		
	observations reveal a new property, Dramūlatva,		
stored in a file named	observations.dat (that has entries indexed by an index		
number and sampling	area dimension d with the other entries being average		
density, average gran	ularity, average pH and average colour). Initial insights		
suggest that this prop	erty, as observed from rectangular cross-sections of		
dimensions $d \times 0.5d$	(in cm^2), can be modeled by a correlative multipeaked	5+5+5+5	CO3
Gaussian function: \Im	$(x) = 2.345 \times 10^{-6} \sum_{i} e^{-(x-x_i)^2}$ ð, where $n = d/10^7$		
and x_i represents equ	ispaced points along the longer dimension. Further		
analysis reveals a bac	kground contribution from bulk atoms, behaving as a		
polynomial divided b	y $z^{3/2}$, where z is the depth-variable from the surface.		
The net expression of	the property is obtained by convolving the surface and		
bulk contributions.			
1. Write a MA	TLAB code to read the observations file and efficiently		
organize the	data into a three-dimensional array.		
2. Write a MA	TLAB code-section to fit a polynomial of degree 10 to the		
data obtained	from evaluating the expression from the initial insight at		
discrete num	ber of points. Once all the polynomials are found for the		

	various samples, take the average coefficient-vector, and store it as the		
	net surface contribution for \mathfrak{I} .		
3.	You are given the average values of the background signals at $z =$		
	0, 2, 4,, 2000 nm for one depth-based analysis. It is seen that the		
	numerical differences of the data-points vanish for the 7 th order		
	difference. Write a MATLAB code-section to fit a polynomial for these		
	values, and store it as the net bulk contribution for \Im .		
4.	Write a MATLAB code-section to convolve the two contributions and		
	plot the expression as a function of distance.		
a.	Define the syms command. Discuss how we can work with symbolic		
	variables, symbolic expressions, symbolic algebra, symbolic		
	summation, symbolic Taylor series expansion and symbolic calculus.		
	Illustrate with an example.		
b.	Discuss the errors in the following code, correct it and give the output		
	of the corrected code (don't change the absence/presence of the		
	semicolon at the end):		
	syms x, y;		
	$expr = sum(sin(x)^2, cos(x)^2);$		
	<pre>simplified_expr = simplify(@(X) expr) substituted_expr = sub(simplified_expr = x = ni/4)</pre>		
	d expr = diff(simplified expr, x, h=0.001)	8+12	CO4
	<pre>integrated_expr = integ(simplified_expr, x)</pre>	-	
	<pre>vars_in_expr = symvars(integrated_expr);</pre>		
	OR		
b.	Discuss , with MATLAB based examples, the following concepts:		
	i. Piecewise definition of a function		
	ii. Symbolic matrices		
	iii. Function plotting across scales		
	iv. Solving non-linear equations		
	v. Enhanced readability of mathematical expressions		
	vi. Matrix left division		