Name:

Enrolment No:

UPES End Semester Examination, May 2024

Course:Physical Chemistry IVProgram:BSc (H) Chemisyry

Course Code: CHEM2025

Semester: IV Time : 03 hrs. Max. Marks: 100

Instructions: All questions are compulsory.

Support your answer with suitable examples and figures wherever required.

SECTION A

(5Qx4M=20Marks)

S. No.		Marks	СО
Q 1	A monochromatic radiation is incident on a solution of 0.05 molar concentration of an absorbing substance. The intensity of radiation is reduced to one-fourth of the initial value after passing through 10 cm length of the solution. Calculate the molar extinction coefficient of the substance.	4	C01
Q 2	The rate constant for a second order reaction is $3.33 \times 10^{-2} \text{ dm}^3 \text{ mol}^{-1}\text{s}^{-1}$. If the initial concentration of the reactant is 0.05 mol dm ⁻³ . Calculate the half-life?	4	CO1
Q 3	A solution of AgNO ₃ was electrolyzed between silver electrodes. The speed ratio of silver and nitrate ions was found to be 0.916. Calculate the transport number of the silver and nitrate ions.	4	CO2
Q 4	Describe two limitations of Beer-Lambert's Law and explain how they can affect the accuracy of concentration measurements.	4	C01
Q 5	What are the key factors influencing the efficiency of a catalytic process, and how can catalyst design be optimized to enhance performance?	4	CO1
	SECTION B (4Qx10M= 40 Marks)		
Q 6	For a Hydrogen-Bromine reaction the rate varies as the square root of the intensity of the absorbed radiation. Justify this statement.	10	CO3
Q 7	The rate constant of a second-order reaction is $5.70 \times 10^{-5} \text{ dm}^3 \text{ mol}^{-1} \text{ s}^{-1}$ at 25 °C and 1.64 x 10 ⁻⁴ dm ³ mol ⁻¹ s ⁻¹ at 40 °C. Calculate the activation energy and the Arrhenius pre-exponential factor.	10	CO2
Q 8	A substance when dissolved in water at 10^{-3} M concentration absorbs 10% of the incident radiation in a path of 1cm length. What should be the concentration of the solution in order to absorb 90% of the same radiation.	10	C01

Q 9	How does Walden's Rule explain the variation in molar conductivity when different salts are dissolved in the same solvent?	10	CO3
	Or		
	Discuss the significance of transference numbers in battery electrolytes. How do variations in transference numbers affect the efficiency and performance of batteries?		
	SECTION-C (2Qx20M=40 Marks)		
Q 10	(a) What is meant by transport number of an ion? How is it determined using Hittorf's method and Moving Boundary method?	10 +10	CO2
	(b) What is photosensitization, explain with the help of energy diagram. Highlight the same process in photosynthesis of plants.		
Q 11	(a) What are the different mechanisms for the formation of Anthracene. Write differential rate law for it.		
	Or		
	Explain the role of photochemical reaction in biochemical process. Discuss with examples.		
	(b) Derive the integrate rate expression for a second order reaction (A + B \rightarrow P).	10 +10	CO3
	Or		
	For the first-order isomerization of an organic compound at 130 0 C, the activation energy is 108.4 kJ mol ⁻¹ and the rate constant is 9.12 x 10 ⁻⁴ s ⁻¹ . Calculate the standard entropy of activation for this reaction.		