Name:

Enrolment No:

UPES End Semester Examination, May 2024

Course: Probability & Statistics Program: B.Sc. (Hons.) Mathematics Course Code: MATH2052

Semester: IV Time : 03 hrs. Max. Marks: 100

Instructions: Attempt all questions from Section A, B and C. Questions 9 and 10 have internal choices. Certain abbreviations are conventionally aligned as discussed in classes. **SECTION A**

	(5Qx4M=20Marks)						
S. No.		Marks	СО				
Q 1	For each of the following random variables, find the moment generating function (MGF). a) <i>X</i> is a discrete random variable, with probability mass function $(PMF) p_{X}(k) = \begin{cases} \frac{1}{3}, k=1 \\ \frac{2}{3}, k=2 \end{cases}$ b) <i>Y</i> is <i>Uniform</i> (0,1)random variable.	4	CO1				
Q 2	If $X_1, X_2,, X_n$ are <i>n</i> independent random variables, then show that $\phi_{X_1+X_2++X_n}(\omega) = \phi_{X_1}(\omega)\phi_{X_2}(\omega)\cdots\phi_{X_n}(\omega)$, where $\phi_{(.)}(\omega)$ is the characteristic function (CF) of the corresponding random variable (\cdot) .	4	CO1				
Q 3	You go to the gym. The speed <i>X</i> of the treadmill is uniformly distributed between 5 to $10 km/hr$. Find the probability density function (PDF) of the time it takes to run $10 km$.	4	CO2				
Q 4	Define Correlation coefficient, $\rho(X, Y)$, of two random varibales X and Y . Further show that $-1 \le \rho(X, Y) \le 1$.	4	CO4				
Q 5	Show that second order moment of a random variable X is minimum when taken about its mean.	4	CO3				
SECTION B (4Qx10M= 40 Marks)							
Q 6	If <i>X Exponential</i> (λ), then find the mean and variance of the random variable <i>X</i> . What is the probability that the random variable <i>X</i> is less that its expected value?	10	CO2				
Q 7	Let X_1 and X_2 be two independent random variables having mean $\mu = 0$ and variance $\sigma^2 = 16$. Compute the probability $P(X_1^2 + X_2^2 > 8)$.	10	CO2				
Q 8	Consider two random variables X and Y with joint Probability mass function (PMF) given in the following table:	10	CO3				

	-									
		V-0	V-1	V-2						
	X = 0	1 = 0	1	1 = 2						
		$\frac{-}{6}$	$\frac{-}{4}$	8						
	X=1	1	1	1						
		8	6	6						
	The following figure shows joint PMF, $p_{XY}(x, y)$.									
	Jointi	PMF 1 0 1								
	 a) Find <i>P</i>(<i>X</i> = b) Find the m c) Find <i>P</i>(<i>Y</i> = d) Are <i>X</i> and 									
Q 9	Let X Be a standa	<i>Y</i> , where $Y = \frac{1}{2}X^2$.								
	Let X be a c	ontinuous rando	m variable and	let $f_x(x)$ be the						
	corresponding PDF. Also let $y=g(x)$ be a continuously differentiable									
	function for all va	lues of x. If $f_{Y}(y)$	10	CO1						
	given by $Y = g(X)$									
	show that $f_{y}(y) =$	that $f_{y}(y) = f_{x}(x) \left \frac{dx}{dy} \right $, where $y \in$ range of g and where you can								
	assume that $f_x(x)$									
			SECTION-C							
		(2	Qx20M=40 Mark	(s)						
Q 10	Answer the follow	ving.	, in a gualit		20	CO4				
	a) State and p									
	onto a plar	ndependent random								
	variable u									
	the likeliho	00 pounds?								
	Suppose we poll <i>r</i> are in favor of a voter population $P(M_n - p \ge \epsilon)$ that	n voters and recor particular candid that supports thi at the polling erro	d the fraction M_n ate. If p is the fr s candidate, then r is larger than sor	of those polled who action of the entire find the probability ne desired accuracy						

	ϵ . Also find how large a sample size <i>n</i> is needed if we wish our estimate M_n to be within 0.01 of <i>p</i> with probability at least 0.95?						te			
Q 11	Derive the normal equations in the least square method when fitting a straight line from a given sample size of <i>n</i> data, (x_i, y_i) , <i>i</i> =1,2,, <i>n</i> . And hence fit the line based on the following sample:						a 1d			
		X	5	10	15	20	25		20	CO4
		у	16	19	23	26	30			
			1	1	1	1				