Name:

Enrolment No:

UPES End Semester Examination, May 2024 **Function of Several Variables and PDEs**

Course: Program: Course Code: MATH2050

B. Sc. (H) Mathematics

Semester : IV Time : 03 hrs. Max. Marks: 100

Instructions: Attempt all questions from Sections A, B, and C. Questions 6 and 11 have internal choices.

(5Qx4M=20Marks) S. No. Q 1 Compute $\frac{\partial z}{\partial z}$ and $\frac{\partial z}{\partial z}$ at the point (0, 1, 2), if $z^3 + xy - y^2z = 6$	Marks	СО
	Marks	CO
01 z ∂z ∂z z ∂z z ∂z z ∂z z z ∂z z z z z z z z z z		
Q 1 Compute $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ at the point (0, 1, 2), if $z^3 + xy - y^2 z = 6$.	4	CO1
Q 2 Define homogeneous function. Check whether the following function		
$u(x, y) = \frac{1}{x^2} + \frac{1}{xy} + \frac{\log_e x - \log_e y}{x^2}$	4	CO1
is homogeneous or not.		
Q 3 Form partial differential equations by eliminating arbitrary constants a and the relation $z = ax + by + a^2b^2$.	nd <i>b</i> from 4	CO2
Q 4 Classify the partial differential equation $5\frac{\partial^2 u}{\partial x^2} - 9\frac{\partial^2 u}{\partial x \partial t} + 4\frac{\partial^2 u}{\partial t^2} = 0.$	4	CO3
Q 5 Find the solution of the equation $\frac{\partial u}{\partial x} = \frac{\partial u}{\partial y}$ using method of separation of v	variables. 4	CO4
SECTION B		
(4Qx10M= 40 Marks)		
Q 6 Examine whether the following functions $u(x, y)$ and $v(x, y)$ are fundependent or not. If functionally dependent, find the relation between the	•	
$u(x,y) = \frac{x-y}{x+y}, \ v(x,y) = \frac{x+y}{x}.$	10	CO1
OR		
Show that the rectangular solid of maximum volume that can be inscrigiven sphere is a cube.	ibed in a	
Q 7 Solve the first-order partial differential equation		
$xy^2p + y^3q = (zxy^2 - 4x^3),$	10	CO2
by using Lagrange's method.		

Q 8	Apply Charpit's method to find the complete solution of the non-linear partial differential equation $z^{2} = pqxy \text{ (where } p \equiv \frac{\partial z}{\partial x} \text{ and } q \equiv \frac{\partial z}{\partial y} \text{.)}$	10	CO3
Q 9	Find the temperature in a laterally insulated bar of 2 <i>cm</i> length whose ends are kept at zero temperature and the initial temperature is $\sin \frac{\pi x}{2} + 3 \sin \frac{5\pi x}{2}$.	10	CO4
	SECTION-C (2Qx20M=40 Marks)		•
Q 10	(i) Solve the partial differential equation		
	$(4D^{2} + 12DD' + 9D'^{2})z = e^{3x-2y}, \text{ where } D \equiv \frac{\partial}{\partial x} \text{ and } D' \equiv \frac{\partial}{\partial y}.$ (ii) Reduce the differential equation $3\frac{\partial^{2}z}{\partial x^{2}} + 10\frac{\partial^{2}z}{\partial x\partial y} + 3\frac{\partial^{2}z}{\partial y^{2}} = 0$ to canonical form.	10+10	CO3
Q 11	A string is stretched and fastened to two points l apart. Motion is started by displacing the string in the form $y = A \sin(\pi x/l)$ from which it is released at time $t = 0$. Show that the displacement of any point at a distance x from one end at time t is given by		
	$y(x,t) = A\sin(\pi x/l)\cos(\pi ct/l).$		
	OR A tightly stretched string with fixed end points $x = 0$ and $x = \pi$ is initially at rest in its equilibrium position. If it is set vibrating by giving to each of its points an initial velocity $\left(\frac{\partial y}{\partial t}\right)_{t=0} = 0.03 \sin x - 0.04 \sin 3x$, then find the displacement y(x, t) at any point of string at any time <i>t</i> .	20 C	CO4