Name:

Enrolment No:

UPES End Semester Examination, May 2024

Course: Real Analysis I Program: B.Sc. (Mathematics by Research) Course Code: MATH1068 Semester: II Time: 03 hrs. Max. Marks: 100

Instructions: Attempt all questions from Section A, Section B and Section C. There are internal choices in Questions 7 and 10.

	SECTION A (5Qx4M=20Marks)		
S. No.		Marks	СО
Q 1	Show that the set $S = \left\{1, \frac{1}{2}, -\frac{1}{2}, \frac{1}{3}, -\frac{1}{3}, \dots\right\}$ is neither open nor closed.	4	CO1
Q 2	Find the supremum and infimum, if they exist, of the set $x \in \mathbb{Q}$: $x = \frac{n}{n+1}$, $n \in \mathbb{N}$.	4	C01
Q 3	Identify the following sequence is bounded or not bounded: $\left\{1 + \frac{1}{2} + \frac{1}{2^2} + \dots + \frac{1}{2^n}\right\}$	4	CO2
Q 4	Evaluate $\lim_{x \to \pi} \frac{\sin x}{2 + \cos x}$.	4	CO3
Q 5	Does the function $f:[0,2] \to \mathbb{R}$ defined by $f(x) = x^2$ satisfy the Lipschitz condition?	4	CO3
	SECTION B (4Qx10M= 40 Marks)		
Q 6	If $0 < \theta < 1$, $ x < 1$, show that $\left \frac{x(1-\theta)}{1+\theta x}\right < 1$.	10	CO1
Q 7	Determine whether the following sequence is non decreasing and bounded from above? $\{a_n\} = \left\{\frac{2^n 3^n}{n!}\right\}$ If it is convergent, then find the limit of the convergent sequence. OR Show that the sequence $\{s_n\}$ defined by the formula $s_1 = 1$, $s_{n+1} = \sqrt{(3s_n)}$ converges to 3.	10	CO2

Q 8	Discuss the existence of the limit of the function f defined as		
	$f(x) = \begin{cases} 1, & if \ x < 1\\ 2 - x, & if \ 1 < x < 2\\ 2, & if \ x \ge 2 \end{cases}$	10	CO3
	at $x = 1$ and $x = 2$.		
Q 9	Determine the values of <i>a</i> , <i>b</i> , <i>c</i> for which the function		
	$f(x) = \begin{cases} \frac{\sin(a+1)x + \sin x}{x} & \text{for } x < 0\\ c & \text{for } x = 0\\ \frac{(x+bx^2)^{\frac{1}{2}} - x^{\frac{1}{2}}}{bx^{\frac{3}{2}}} & \text{for } x > 0 \end{cases}$	10	CO3
	is continuous at $x = 0$		
	SECTION-C (2Qx20M=40 Marks)		I
Q 10	State and prove Cauchy's second theorem on limits. OR Show that necessary and sufficient condition for the convergence of monotonic sequence is that it is bounded.	20	CO2
Q 11	 (i) Check whether the function f: [-2, 2] → R defined by f(x) = x³ is uniformly continuous or not? (ii) Let y = E(x), where E(x) denotes the integral part of x. Prove that the function is discontinuous where x has an integral value. Also draw the graph. 	20	CO3