Name:

**Enrolment No:** 



| UPES                                                              |                                                                                       |           |      |  |  |
|-------------------------------------------------------------------|---------------------------------------------------------------------------------------|-----------|------|--|--|
| End Semester Examination, May 2024                                |                                                                                       |           |      |  |  |
| Course: Robot Motion Planning and Navigation Semester: II         |                                                                                       |           |      |  |  |
| Program: M.Tech Robotics Engineering Time                         |                                                                                       |           | 5.   |  |  |
| Cours                                                             | Marks: 10                                                                             | 0         |      |  |  |
| Instructions: Attempt all the questions. Assume any missing data. |                                                                                       |           |      |  |  |
|                                                                   |                                                                                       |           |      |  |  |
|                                                                   | SECTION A                                                                             |           |      |  |  |
|                                                                   | (5Qx4M=20Marks)                                                                       |           |      |  |  |
| S.No                                                              |                                                                                       | Marks     | CO   |  |  |
| 0.1                                                               | L'at the disc description of DID controller second as del based controller.           | IVIUI IND | 00   |  |  |
| QI                                                                | List the disadvantage of PID controller over model-based controller.                  | 4         | CO1  |  |  |
| Q 2                                                               | Explain the various consideration while solving the path planning algorithms with     | 4         | CO1  |  |  |
|                                                                   | suitable scenarios.                                                                   | 4         |      |  |  |
| Q 3                                                               | State the significance of obstacle avoidance methods in autonomous robot path         | 4         | COL  |  |  |
|                                                                   | planning.                                                                             | -         | COI  |  |  |
| Q 4                                                               | Explain briefly applications of mathematical model of an autonomous robot.            | 4         | CO1  |  |  |
| 0.5                                                               | List the advantages of feedback control over the feedforward controller               | 4         | 001  |  |  |
| ו                                                                 |                                                                                       | 4         | COI  |  |  |
| SECTION B                                                         |                                                                                       |           |      |  |  |
| (4Qx10M= 40 Marks)                                                |                                                                                       |           |      |  |  |
| Q 6                                                               | Explain briefly how PID controller can be used for trajectory tracking for a desired  | 10        | CO4  |  |  |
|                                                                   | reference trajectory by a robot?                                                      | 10        | 0.04 |  |  |
| Q 7                                                               | Discuss the possibilities in obtaining the robust path for an arena by Dijkstra       | 10        | CO2  |  |  |
|                                                                   | algorithm.                                                                            | 10        | 001  |  |  |
| Q 8                                                               | An autonomous vehicle is required to travel in stealth mode to avoid radar            |           |      |  |  |
|                                                                   | detection. Suggest the problem formulation consideration in framing the path          | 10        | CO3  |  |  |
| 0.0                                                               | planning.                                                                             |           |      |  |  |
| Q9                                                                | Explain briefly the steps required by A* algorithm in obtaining the shortest path in  |           |      |  |  |
|                                                                   | a griu map with suitable example.                                                     | 10        | CO3  |  |  |
|                                                                   | Uf<br>Illustrate the reguldy evolution render trace (DDT*) electithm in obtaining the | 10        | 005  |  |  |
|                                                                   | robust path in a grid map with suitable example                                       |           |      |  |  |
|                                                                   |                                                                                       |           |      |  |  |
| (20x20M=40  Marks)                                                |                                                                                       |           |      |  |  |
| 0.10                                                              | Apply the inverse kinematics in obtaining the control action sequence for trajectory  |           |      |  |  |
|                                                                   | tracking by the for the differential drive robot. The inverse kinematics model of     | 20        | CO4  |  |  |
|                                                                   | the differential model is given below.                                                |           |      |  |  |

|      | $\begin{bmatrix} \omega_L \\ \omega_R \end{bmatrix} = \begin{bmatrix} \frac{1}{a} & 0 & -\frac{d}{a} \\ \frac{1}{a} & 0 & \frac{d}{a} \end{bmatrix} \begin{bmatrix} \cos(\psi) & \sin(\psi) & 0 \\ -\sin(\psi) & \cos(\psi) & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \dot{x} \\ \dot{y} \\ \dot{\psi} \end{bmatrix}$ $\begin{bmatrix} x(t+1) \\ y(t+1) \\ \psi(t+1) \end{bmatrix} = \begin{bmatrix} x(t) \\ y(t) \\ \psi(t) \end{bmatrix} + \Delta T \begin{bmatrix} \dot{x} \\ \dot{y} \\ \dot{\psi} \end{bmatrix}$ Where x, y and $\psi$ , represent x coordinate, y coordinate and orientation from the x axis of the robot. And a, d represents the length between the wheels and d represents the diameter of the motored wheels. The rotational speeds of the right and left motored wheel are presented by $\omega_L$ and $\omega_R$ .<br>For the differential drive robot consider $a = 2$ unit and d as 0.5 unit. The desired reference trajectory is to travel 9 units north and then 9 units west at the speed of 3 units per second. The initial orientation of the robot is towards north and placed at the origin. |    |     |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----|
| Q 11 | Apply artificial potential field in determining the robust path from start position<br>(S) to destination (D) in the shown arena. Discuss the limitations of the algorithm<br>and comment on robustness of the path obtained.<br>S Or Apply the Dijkstra algorithm in obtaining the robust path from start point (S) to<br>destination (D) in the following figure. State the assumptions taken to obtain the<br>shortest path. Also comment on robustness of the path obtained.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 20 | CO3 |