Name:				
Enrolment No:			DMORROW	
UPES				
End Semester Examination, May 2024				
Programme Name: M. Tech (PE) Semester : II				
Course Name: Computational Fluid Dynamics (CFD)TimeCourse Code: PEAU7023Max			ne : Iax. Marks	03 hrs • 100
	$\frac{1}{2} \operatorname{page}(s) : 1$	14	lax, 19141 N5	. 100
		ee sections. Answer the questions section wise ir	the answer be	ooklet.
	Assume suitable data wherever necessa	iry		
	A	SECTION A		
S. No.		swer all questions	Marks	CO
Q1	Write a short note on structures and	l unstructured grid.	4	CO2
Q2	Describe the important features of Finite Volume method.		4	C01
-	-			
Q3	Classify the following linear second order partial differential equations (PDEs) with solution $u(x,y)$ in the xy-plane. 1. $u_{xx} + u_{yy} = 0$			CO4
Q4	2. $u_{xx} + yu_{yy} + \frac{1}{2}u_y = 0$ What do you mean by cell centered finite volume discretization.		4	CO4
Q5	Explain the Crank Nicolson scheme.		4	CO3
૨ -			•	000
	An	SECTION B swer all questions		
Q6	$\partial^2 y$		l. 10	CO2
	Assume $\Delta x = 0.2$. Use finite difference		10 002	
Q7	Derive Continuity Equation in cartesian coordinates.		10	CO4
Q8	Explain the features of TDMA algo	orithm	10	CO2
Q9	Describe the concept of upwind int	erpolation technique.	10	CO1
		SECTION C		
		swer the question.	1	1
Q10	the one-dimensional domain. The b $\phi_L = 0$ at x = L. Using 5 equally scheme for convection and diffusio	teans of convection and diffusion throug oundary conditions are $\phi_0 = 1$ at x = 0, ar spaced cells and the hybrid differencir n calculate the distribution of ϕ as function $h = 1.0$ cm, $\rho = 1.0$ kg/m ³ , $\Gamma = 0.1$ kg/ms	d 20 g n	CO1
Q11	A thin plate is initially at a uniforr t=0 the temperature of the east sid The other surface is insulated. Use conjunction with a suitable time	n temperature of 200°C. At a certain time of the plate is suddenly reduced to 0°C the fully implicit finite volume method step size of 8s to calculate the transient slab. Plate thickness $L=2$ cm, therm	2. n 20	C03