Name:

Enrolment No:

UPES

End Semester Examination, May 2024

Course: M Tech (HSE) **Program:** Plant layout and material handling **Course Code:** HSFS 7031

Semester: II Time : 03 hrs. Max. Marks: 100

> Instructions:

Attempt all the sections.

Draw neat diagrams. Assume missing data if any.

Please use the full three hours wisely.

SECTION A								
(5Qx4M=20Marks)								
S. No.		Marks	СО					
Q 1	List out four types of material handling equipment.	4	CO1					
Q 2	How to safely handle dangerous materials?	4	CO1					
Q 3	What are the risk elements in manual material handling environment?	4	CO1					
Q 4	AGVs do not require an operator. Why?	4	CO1					
Q 5	I.AGV stands for?(a) Automatic Guided Vehicle(b) Auto Guided Vehicle(c) Automated Guide Vehicle(d) Automated GuidedVehicleII.II.Hand trucks are also called as(a) order picker(b) pallet trucks(c) dollies(d) stackers	2 2	CO1					
	SECTION B							
	(4Qx10M= 40 Marks)		1					
Q 6	Karan Engineering is contemplating to integrate the AGVS and AS/RS with their flexible manufacturing system. Karan Engineering is interested to determine number of AGVSs required for its manufacturing system. It has to deliver 66 pieces per hour. The company has decided in favour of	10	CO4					

	installing a wire guided path system and the unit load AGVS Calculate								
	the number of AGVs required								
	The following data has been collected as shown:								
	• Vehicle Speed 200 ft/min								
	\circ Average loaded travel distance per delivery 600ft								
	• Average empty travel distance per delivery 400 ft								
	• Pickup time 0.25 min								
	o Drop off time 0.25 min								
	o Drop-off time 0.25 mill								
07	O If affice factor 0.75								
Q /	i. Explain the types of plant layout with suitable examples.								
	Also explain its merits.								
	COMPONENTS								
	MATERIAL LABOUR								
		6+4	CO2						
	• • • • • • • • • • • • • • • • • • •								
	LABOUR MATERIAL								
	COMPONENTS								
Q 8	Explain any ten basic principles / guidelines for designing and	10	CO4						
	operating an effective & efficient material-handling system.								
Q 9	Identify and analyze criteria and sub-criteria for the selection of a plant	10	CO3						
	location for a pharmaceutical industry.	10	005						
	SECTION-C								
	(2Qx20M=40 Marks)								
Q 10	a. For a typical Class 10,000 cleanroom space with a typical internal	6							
	generation of approximately 4,850 per CFM, and supply air	0							
	through 99.9 % HEPA filters, what shall be the required air-								
	change rate?	4	CO4						
	b. What do you understand by HVAC requirements?								
	in a forging industry is planning to implement AGVs in the	10							
	organization. There are five CNC workstations (A, B, C, D, E)								
	and a load-unload station (F). Approximate time of moving the								
	crankshaft on AGVS between stations is shown in Table.								

		А	в	C	D	E	F		
	А	-	2		D	L	1		
	В	2.5	-	2.5					
	C		3	-	1.0				
	D			2	-	0.5	1.0		
	F	0.5			1.5	0.5	1.0		
	Two hundred crankshafts are machined in every 8-h shift and the								
	operations on the crankshaft are performed in sequence from station A								
	through E. Taking an assumption that every pickup and drop-off								
	operation takes approximately 0.70 min, determine the number of								
	AGVSs to meet the demand of moving 200 crankshafts. The load factor								
	is assumed to be 0.78 and the traffic factor 0.96.								
Q 11	Briefly explain:								
	i. Requirements for the physically challenged person in power							5	
	elevator.								
	ii. Coimbatore is familiar for textile industries. Mention the reasons.							5	
								-	CO1
	iii.	Types of	of ventila	tion syste	ms used	in Industr	ies with neat	-	
	diagram.							5	
	iv. Requirements of light for various works with suitable								
		example	5						