Name:

Enrolment No:

UPES End Semester Examination, May 2024

Course: Medicinal Chemistry Program: MSc Hons Chemistry Course Code: CHEM7055 Semester: II Time: 03 hrs. Max. Marks: 100

Instructions:

- 1. Read all the questions carefully and attempt questions of one section in one place.
- 2. Question 9 in Section B and Question 11 in Section Chave internal choice questions.
- **3.** Use of Calculator is allowed.

	SECTION A			
(5Qx4M=20Marks)				
S. No.		Marks	СО	
Q1	Discuss in brief Phase I and Phase II metabolism of a drug.	4	CO1	
Q2	Explain the role of the following in a pharmaceutical industry:a. Process development.b. R&Dc. Quality assurance.	4	CO2	
Q3	What are the different routes of administration of a drug? Which is the best route considering patient compliance?	4	CO2	
Q4	Justify the statement "Enzyme stimulation manifests chronic diseases" in context of inflammation and related disorders.	4	CO3	
Q5	How will you differentiate the following from Lineweaver Burk Plots:a. Competitive inhibition.b. Non-competitive inhibition	4	CO1	
	SECTION B (4Qx10M=40Marks)			
Q6	Write a note on the role of Biotransformation of xenobiotics in contemporary drug discovery process.	10	CO3	
Q7	Explain the following:(i)Receptor Theory and Drug Behavior(ii)Types of Reversible Enzyme Inhibitors.	10	CO2	
Q8	Define an LD50 dose. How it is different from the IC50 and EC50 values? Explain with suitable examples.	10	CO2	

Q9	What is the role of compartmental models in the quantitative evaluation of drug pharmacokinetics? Explain with examples in context of a three- compartment model.	10	CO3
	OR		
	Under what conditions is the 'Lipinski's Rule of 5' relaxed in a drug discovery process? Discuss in detail.	10	CO3
	SECTION C (2Qx20M=40Marks)		<u> </u>
Q10	Schematically discuss the steps involved in a typical drug discovery process starting from the fragment-based analysis to the lead optimization. As a medicinal chemist, how will you determine the precision of the results obtained from the various <i>in silico</i> analysis during this process.	20	CO2
Q11	Write a detailed account on the various Theories of Drug Action based on the Drug-Receptor interactions.	20	CO2
	OR		<u> </u>
	Write the synthesis and uses of the following drugs:		
	 a. Salbutamol b. Penicillin c. Melphalan d. Acetaminophen 	20	CO2