Name:

Enrolment No:

UPES End Semester Examination, May 2024

Course: Engineering Mathematics II Program: SoAE (All Branches) Course Code: MATH1051 Semester: II Time : 03 hrs. Max. Marks: 100

Instructions: Attempt all questions. There will be internal choice in Q. No. 9 & 11.

SECTION A (5Qx4M=20Marks)				
S. No.		Marks	СО	
Q 1	For what values of α and β , the differential equation: $(\alpha x^2 y - 2\beta y)dx + (2x - x^3)dy = 0$ becomes exact?	4	C01	
Q2	Compute the value of $f(1)$ if $\oint_{ z =\pi} \frac{1}{(7z-22)} dz = f(z) + \pi$	4	CO2	
Q3	Use Cauchy's integral formula to evaluate the integral: $\oint_C \frac{e^{2z}}{(z-1)} dz$ where C is a circle $z = 1 + 2e^{i2\theta}, \theta \in [0, 2\pi)$ oriented counterclockwise.	4	CO2	
Q4	Determine the image of the unit circle in the complex plane under the linear fractional mapping $f(z) = \frac{2z-1}{z+1}$.	4	CO3	
Q5	Identify the regions S_1 , S_2 and S_3 in XY-plane where the partial differential equation $x^2u_{yy} + y^2u_{xx} = 0$ is parabolic, hyperbolic and elliptic.	4	CO4	
	SECTION B	1		
Q6	(4Qx10M= 40 Marks) Consider the ordinary differential equation: $\frac{d^2y}{dx^2} + 5\frac{dy}{dx} + 6y = e^{5x} - 1$ Find the solution $y(x)$.	10	CO1	
Q7	Let <i>C</i> be the semi-circular arc of radius unity in the upper-half plane oriented counterclockwise. Evaluate the complex integral: $\int_{c} e^{2(\overline{z})^{-1}} dz$	10	CO2	

Q8	Apply Milne Thomson's method to find an analytic function $f(z)$ such that $Re\{f'(z)\} = 3(x^2 - y^2), f(0) = 1$ and $f(-1) = 0$.	10	CO2
Q9	Obtain the Taylor's series expansion of the function $f(z) = \sin z + \cos z$ centered at $z = 0$ retaining terms up to degree 3. OR Find the Laurent's series expansion of $f(z) = \frac{z}{(z-1)(z+1)}$ in the annular region 0 < z - 1 < 1.	10	CO3
	SECTION-C (2Qx20M=40 Marks)		
Q10	 Consider the function f(z) = sin(z-1)/((z-1)(e^z+e^{-z})). (a) Find the set S of all singularities of f(z). (b) Determine the nature of each singularity in S. (c) Find the residue of f(z) at z = 1. (d) Use Cauchy's residue theorem to evaluate ∮_C f(z)dz where C is the circle z = 3/2 oriented counterclockwise. 	20	CO3
Q11	 The partial differential equation governing the vibrations in a tightly stretched elastic string of length 2 units between two fixed points is given by: 4 ∂²y/∂x² = ∂²y/∂t². (a) Use the method of separation of variables to find the most general solution of the above partial differential equation. (b) Impose the conditions y(0, t) = y(2, t) = 0 for all t > 0 and y(x, 0) = 2sin (πx/2) + 3sin (3πx/2) and ∂y/∂t (x, 0) = 0 for all 0 ≤ x ≤ 2 on the solution obtained in part (a). (a) Obtain the partial differential equation corresponding to the family of surfaces z = f(x² - y) where f is an arbitrary differentiable function. (b) Find the general solution of partial differential equation: ∂²z/∂x² - ∂²z/∂y² = 0 (c) Obtain two different particular solutions for the partial differential equation: ∂²z/∂x² - ∂²z/∂y² = xy. 	20	CO4