Name: Enrolment No:							
LIDES							
UI ES End Semester Examination May 2024							
Programme Name : B. Tech (Electronics and Computer) Semester · II							
Course Name · Analog Electronics-I Time		Time:	03 hrs				
Course Code : ECEG1011 Max		Marks: 10	00				
Nos. of	Nos. of page(s) : 3						
Instructions: In Section B and C, one internal choice is provided for each.							
SECTION A							
	An	swer all questions.					
S. No.			Marks	CO			
Q 1	State the True/False	determine the high frequency of mean and					
	(i) Bypass capacitors in an amplifier (ii) An octave corresponds to a doubli	determine the high-frequency response.					
	(ii) The drain current in a CS amplifier can be calculated using a Shockley equation			COI			
	(iv) Base bias is less stable than volta	ge-divider bias.					
Q 2	(i) In an FET, the trans-conductance g	is proportional to					
	(a) I_{DS} (b) I_{DS}^2 (c) $\sqrt{2}$	$I_{\rm DS}$ (d) $\frac{1}{I_{\rm DS}}$					
	(ii) A certain common-source amplifie	er has a voltage gain of 10. If the source					
	bypass capacitor is removed,						
	(a) the voltage gain will increase (b)	the transconductance will increase	4	COL			
	(c) the voltage gain will decrease (d)	the Q-point will shift.	4	COI			
	(111) If the voltage gain doubles, the de	cibel voltage gain increased by					
	(a) A factor of 2 (b) $3 dB$ (c)	6dB (d) 10 dB					
	(iv) A Darlington transistor has						
	(a) A very low input impedance	(b) Three transistors					
0.2	(c) A very high current gain	(d) One V_{BE} drop	4	<u> </u>			
QS	Describe the advantages and disadvantages of FET in comparison to BJT.		4	COI			
Q 4	A four identical amplifier has a lower	\cdot 3 dB frequency for an individual stage of f_L					
	= 40Hz. What is the value of f_{I}^{*} for this	is full amplifier.	4	CO4			
Q 5	It desired to have a high gain amplified	er with high input impedance and low output	Λ	CO4			
	impedance. If a cascade of four stages	s is used, what configurations should be used	4	004			
tor each stage?							
0.6	Show that the transconductance g of	SECTION D f a IFET is related to the drain current Ips by					
QU	$\frac{2}{\sqrt{1-1}}$	a strict is related to the drain current ibs by	10 CO3				
	$g_{\rm m} = \frac{1}{ V_{\rm p} } \sqrt{I_{\rm DSS} I_{\rm D}}$						
	If $V_P = -4V$ and $I_{DSS} = 4$ mA, plot g_m	versus I _D .					
Q 7	Sketch the small-signal low freque	ency re model of a common emitter BJT	10	CO3			
	configuration. Determine Zi, Zo, and A	A _v for the given configuration.					
Q 8	Draw the Darlington pair circuit. Exp	plain why the input impedance is higher than	10	COA			
	that of a single stage emitter follower.		10	004			
OR							

	Calculate the dc bias voltages and currents for the Darlington configuration of Fig.1		
Q 9	Sketch the transfer and drain characteristics of an n-channel JFET with $I_{DSS} = 9$ mA and $V_P = -6$ V for a range of $V_{GS} = -V_P$ to $V_{GS} = 0$ V.	10	CO2
	SECTION C		
Q 10	(i) Explain the construction of n-channel JFET.(ii) Differentiate between (a) n-channel and p-channel MOSFET. (b) Depletion type and enhancement type MOSFET.		CO1
	(iii) For the network of Fig.2, determine: (a) V_{GSQ} and I_{DQ} . (b) V_{DS} , V_D , V_G , and V_S . 18 V $118 V$ $118 V$ $110 V$ $110 V$	5+5+10	CO2
	Fig.2 Fig.2 $I_{DSS} = 10 \text{ mA}$ $V_{P} = -4 \text{ V}$ V_{GSQ} $T_{DSS} = 10 \text{ mA}$ $V_{P} = -4 \text{ V}$		
Q 11	For the network of Fig.3 (a) Determine r_e . (b) Find Z_i and Z_o . (c) Calculate A_v . (d) Repeat parts (b) and (c) with $r_o = 20 \text{ k}\Omega$	4x5=20	CO3

