Name:

Enrolment No:

UPES End Semester Examination, May 2024

Programme Name	:	B.Tech (Mechatronics Engg.)
Course Name	:	Industrial and Service Robots
Course Code :	:	ECEG7030
Nos. of page(s) :		2

Semester : VIII Time : 03 hrs Max. Marks: 100

Instructions: All the sections are mandatory.

	SECTION A (5Qx4M=20Marks)				
S. No.		Marks	СО		
Q 1 Describe the present status and future trends in service robotics.		4	CO1		
Q 2	Q 2 Explain the A* algorithm for global path planning.		CO1		
Q 3	23 Explain the particle filter and its role in robot localization.		CO1		
Q 4	Interpret and explain the concept of robot maneuverability and workspace.	4	CO2		
Q 5	Find the Transformation matrix of a mobile robot that to point P [1, 1, 0] ^T relative to the reference frame after a rotation of 30°.	4	CO2		
SECTION B (4Qx10M= 40 Marks)					
Q 6	Explain the following terminologies.a) Hybrid Maps.b) Metrical Maps.	10	CO2		
Q 7	Design a hydraulic circuit diagram for an industrial robot using a proportional valve-controlled hydro-motor drive for drilling in a steel block.	10	CO3		
Q 8	Create a schematic flow chart for a mobile robot used in plant material handling. Compare AGVs and AMRs used in material handling.		CO3		
Q 9	9 Analyze the fundamental principles of obstacle avoidance algorithm using sensor data.		CO4		

	"OR"				
	Compare and contrast the key features and limitations of Bayes filter and				
	Kalman filter for a robot localization.				
	SECTION-C		1		
(2Qx20M=40 Marks)					
Q 10	Evaluate and analyze the concept of SLAM (Simultaneous Localization				
	and Mapping) and its applications in robotics. Explain the importance of				
	SLAM in robotics and its potential impact on robotic systems.				
	"OR"	20	CO4		
	Critically analyze and evaluate the A* algorithm in the context of robot				
	path planning. Explain the components and parameters of the A*				
	algorithm and examine their impact on the algorithm's computation.				
Q 11	Discuss the deployment challenges associated with a probabilistic map- based localization algorithm. Evaluate the effectiveness of the Monte Carlo localization technique for robot localization.	20	CO5		