Name:

Enrolment No:

UPES

End Semester Examination, May, 2024

Program Name: B.Tech Electrical Engineering/ Electronics & Computer Engineering

Course Name: Digital Logic & Computer Architecture

Course Code: CSEG-1015

Nos. of page(s): 2

Instructions: Assume any data in the design, if required.

	SECTION-A $(5Q \times 4M = 20 \text{ Marks})$		
S. No.		Marks	СО
Q.1	List the different features of Register transfer language (RTL) in computer organization.	4	CO1
Q.2	(a) Implement the XOR using NOR(b) Implement the XOR using NAND	2+2	CO2
Q.3	 Given the two binary numbers X = 1010100 and Y = 1000011, perform the subtraction (a) X - Y and (b) Y - X by using 2's complements. 	4	CO1
Q.4	Draw the system bus architecture in computer organization. A RAM chip has asize (8Kx16) then determine.(a) No of address lines(b) No of data lines(c) No of possible registers(d) No of flip-flops	4	CO2
Q.5	 (a) State and prove Demorgan's Theorem using the truth table. (b) Prove the associative law: A + (B + C) = (A + B) + C 	2+2	CO1
	SECTION B (4Q x 10M = 40 Marks)		
Attempt	all of the followings		
Q.6	What are the microoperations of a processor? Explain arithmetic microoperations. OR Discuss Flynn's taxonomy for computer architecture. Compare RISC and CISC	10	CO1
Q.7	architecture.Explain the functionality of the (3x8) decoder with a complete truth table, equations, and logic diagram.	10	CO2
Q.8	Discuss the IEEE floating point format for 8-bit, 16-bit, 32-bit, and 64-bit. Convert number (85.125) ₁₀ to 16-bit and 32-bit IEEE format.	10	CO4
Q.9	 (a) Detail the working of (1x4) demultiplexer with logic diagram, equation, and truth table. (b) Detailed the working of a 3-bit error generator and 4-bit error detection circuit with logic diagram, equation, and truth table. 	10	CO3

Semester: II Time: 3 hrs Max. Marks: 100

SECTION-C (2Q x 20M = 40 Marks)																
Attempt any two of the following																
Q.10	(a) Explain the detailed concept of RAM and ROM Chips and pins. How are															
	CPU Take an example of the memory interface chins listed below. Detail the															
	functionality of the design and interface.									clow. Detail the						
										_						
	Component Hexa				A	ddr	ess	s bu	IS			_				
		address	10	9	8	7	6	5	4	1	3	2	1		10+10	CO4
	RAM 1	0000 - 007F	0	0	0	x	X	x)	ç	x	x	X			
	RAM 2 RAM 3	0080 - 00FF 0100 - 017F	ŏ	1	ò	x	x	x	,	č	x	x	x			
	RAM 4	0180 - 01FF	0	1	1	x	x	х)	¢	х	х	x			
	ROM	0200 - 03FF	1	х	x	X	х	x)	C	x	х	X			
	(b) Explain the de	etailed working a	nd dia	lora	m oʻ	f N	M)S-ł	oas	ed	dv	/na	mi	c RAM		
0.11	(a) Design a code converter that accepts BCD inputs and converts them to its equivale									n to its equivalent						
C	(a) Design a code converter that accepts DCD inputs and converts them to its equivalent excess-3 code.(b) How the full adder operation is performed using two half adders. Design a look								1							
									10+10	CO2						
	ahead carry ad	dder/generator	(4-bi	t).	De	tail	l t	he	cc	m	npl	ete	e	lescription with		
	equations, logic diagram, and truth table.															
Q.12	(a) Explain the c	lifferent operation	ons o	of A	rith	me	tic	anc	l lo	ogi	ica	1 u	nit	(ALU) in detail.		
	Let $A = 78$ H and $B = 81$ H and we want to perform the addition Show the status of										how the status of					
	all the status registers in ALU.															
	(b) Simplify the Boolean functions using K-Map											10+10	CO3			
	$F(w, x, y, z) = \sum m (0, 1, 2, 4, 5, 6, 7, 10, 15)$															
	$F(A, B, C, D) = \pi M(1, 3, 5, 7, 13, 15)$															