Name:												
Enrolment No:												
UPES, DEHRADUN.												
End semester Examination, April-May- 2024												
Program Course	:11 •3 hrs											
Course	Code : CHCE 202	29	igy Da		iiculatio	115	Max. Mark	. 5 m s ss : 100				
Nos. of page(s) : 02												
Instructions : Assume any missing data. Draw the diagrams, wherever necessary.												
SECTION A (5X4=20 marks)												
S. No.				`		<u></u>		Marks	CO			
1	A liquefied mixture of methane, butane and propane has the compositions of 20, 35 and 45 percent respectively by volume. Find mol%, weight %, and average molecular weight of the mixture and density at STP.							4	CO1			
2	Sulfur trioxide is obtained by the combustion of iron pyrites FeS2 according to the reaction							4	CO2			
	How many kilograms of pyrites are burned to obtain 100 Kg of sulfur trioxide. How											
	many kilograms of ox	ygen is	consum	ned durir	ng the p	roduction of 50 H	Kg of sulfur					
	trioxide.											
3	A wet stock of ammonium sulfate containing 20% water is sent to a drier. The material leaving the drier contains 2.44% moisture. Determine how many kgs of water removed per kg of wet cake charged. Also find the percentage of original water in the feed that							4	CO2			
4	The solubility of sodium chloride in water at 298K is 35.8 kg/100 kg of water							4	CO2			
	Express the solubility as 1. Mass (Weight) % of NaCl 2. Mole % of NaCl 3. Kmol of NaCl/100 kg of water											
5	If Cp of a gas is $Cp = a + bT + cT^{-2}$, T in K and Cp in KJ/kmol K.								CO4			
	a) Derive is the average heat capacity between the temperatures T_1 to T_2 .											
	what will be the heat f	equired	to neat (SECT	I OI gas I ION B	$\begin{array}{c} \text{rom } 1_1 \text{ to } 1_2. \end{array}$						
			(4 X 10=4	40 mark	s)						
	10,000 kg/h of solution	o contain	ing 20 9	% metha	nol is co	ntinuously fed to a	a distillation					
	column. Distillate (Proc	10										
6	the column carries 1%	methano	l. All pe	ercentage	es are by	weight. Calculate	;	10	CO1			
	a. The mass flow rate of distillation and bottom product.											
	b. The percentage los	s by met	hyl alco	hol.								
	A producer gas made from coke has the following composition by volume.											
	Item	CO	02		N 2							
	Composition	28	0.5	3.5	68	-						
7		2004					TC /1	10	CO3			
	I his gas is burned with 20% excess air(Assuming complete combustion). If the											
combustion is 96% complete, calculate the weight and composition of the stack												
	gases formed per 100 moles of gas burned.											

8	A solution of sodium chloride is available at 343 K which is saturated. This solution	10	CO3
	when cooled to 298 K, releases 100 g of crystals of NaCl.		
	a) What is the weight of the initial solution at 343K.		
	b) What is the weight and composition of the residual mother liquor.		
	The solubility of NaCl in water at 343 and 298 K are 6.39 and 6.14 kmol /1000 kg		
	water respectively.		
	1000 kg/h of thermic fluid to be used as a heat transfer medium is being heated using	10	CO4
9	a heater from 380 to 550 K. Calculate the heat load on the heater in KW. The heat		
	capacity of the fluid is given by the equation $Cp=1.436+2.18\times10^{-5}T$ where T in K and		
	Cp in kJ/kg K.		
	SECTION C		
	$(2 \times 20=40 \text{ marks})$		
10	4.28 g of PCl ₅ . According to the following reaction. Detail the following.		
	$P_4 + 10Cl_2> 4PCl_5$	10	
	1. Limiting reactant 2. % excess reactant 3. Extent of reaction 4. What is the wield of PCI with respect to P		CO2
	b. The drag coefficient C_D is known to be function of diameter of the sphere, velocity		
	and the fluid properties of the medium like its viscosity and density in a flow past		
	immersed medium. Using Buckingham's π -theorem, write an expression for		
	discharge C_D (dimensionless) dimeter of the sphere, d (m), speed u (m/s), density	10	
	of medium ρ (kg/m ³), viscosity of medium μ (kg/m-s).		
	One kg of water is heated from 250 K to 400 K at one standard atmospheric pressure.		
	Estimate, how much heat is required for this?		
	Data: The mean heat capacity of ice Cp=2.03 KJ/kmol K (between 250 and 273 K)		
	The heat capacity of water between 273 K and 373 K is 1 btu/lb $^{\circ}$ F.		
	$Cp=30.475+9.652x10^{-3} T + 1.189x10^{-6} T^2$.		
	The latent heat of fusion of water is 144 btu/lb and that of vaporization is 40608		
	KJ/Kmol.	20	CO4
11	OR		
11	The heat capacity of benzene at two different temperatures is		
	T (K) 293 323		
	Cp (J/gmol K) 131.05 138.04		
	Fit the data into an equation of the form $Cp=a+bT$.		
	Calcualte the heat required to convert 100 kg of liquid benzene from 293.15 K to		
	saturated vapor at the boiling point of 353.25 K. The latent heat of vaporization may AH		
	be calculated using the Kistyakowsky equation $\frac{2\pi}{T_b} = 36.63 + 8.31 \ln T_b$ where Tb is		
	the boiling point of benzene and ΔH is the heat of vaporization.		