Name:

Enrolment No:

UPES

End Semester Examination, May 2024

Electrochemical Thermodynamics Course:

Program: MSc (Chemistry) Course Code: CHEM7053

Max. Marks: 100

Instructions: Read all the questions carefully. There is a choice in section B and C for question 9 and 11.

SECTION A				
(5Qx4M=20Marks)				
S. No.		Marks	СО	
Q 1	Define ground state degeneracy in case of nuclear partition function.	4M	CO2	
Q 2	Find out Rotational partition function for H ₂ O, NH ₃ , C ₆ H ₆ by applying symmetry number	4M	CO2	
Q 3	A certain system of non-interacting particle has the single partition function i.e. $f = \frac{AT^m}{V}$ where A is a constant. Derive the expression for average energy per particle.	4 M	CO3	
Q 4	Illustrate relation between state functions U, H, T, V, S, P according to Maxwell equation.	4M	CO1	
Q 5	Demonstrate excess function of mixing in terms of chemical potential.	4 M	CO3	
SECTION B (4Qx10M= 40 Marks)				
Q 6	Define activity co-efficient and demonstrate its range from negative to positive in terms of concentration.	10M	CO3	
Q 7	How much heat will be rejected to the room per second if 17 J electrical energy is given to the refrigerator. Given, temperature of refrigerator is -4 °C and room temperature is 25 °C.	10M	CO1	
Q 8	Which one is having higher mean activity co-efficient and whyi)0.001 M NaClii)0.001 M MgCl2	10M	CO3	
Q 9	Draw the Einstein model for specific heat capacity of solids. Or Describe vibrational partition function for energy level with zero-point energy.	10M	CO2	

Semester: II Time: 03 hrs.

SECTION-C (2Qx20M=40 Marks)				
Q 10	Derive the statistical distribution for the following condition: i) Particles are non-distinguishable.	20M	CO1	
	ii) More than one particle resides in one energy level.		001	
Q 11	Define partition function and illustrate its components based on the different types of motions in the molecules		CO2	
	Or	20M		
	Derive the relation between thermal wavelength and translational partition function using the concept of particle moving in a three-dimensional box.			