Name:

Enrolment No:

UPES

End Semester Examination, May 2024

Course: Mathematical Physics II

Program: BSc Physics (H)
Course Code: PHYS1034

Semester: II

Time : 03 hrs.

Max. Marks: 100

Instructions: All questions are compulsory (Q9 and Q11 have internal choice)

SECTION A (5Qx4M=20Marks)

S. No.		Marks	СО
Q 1	Convert the given ordinary polynomial into Hermite polynomial $12 x^2 + 14x + 3$	4	CO1
Q 2	Discuss briefly 'isomorphism' and 'homomorphism' in group theory	4	CO1
Q 3	Calculate propagation error for $F = x+y$ and $F = x-y$. Consider $x = 9.51\pm0.10$, $y = 5.90\pm0.10$	4	CO2
Q 4	Evaluate, $\int_0^{\pi/2} \sqrt{\cot \theta} \ d\theta$	4	CO3
Q 5	From the given data find out 'n' (order of Hermite polynomial) $\int_{-\infty}^{\infty} e^{-x^2} H_n^2(x) dx = 384\sqrt{\pi}$	4	CO4

SECTION B (4Qx10M= 40 Marks)

Q 6	What is probable error? Calculate standard error and probable error for a		
	measurement with correlation coefficient of 0.6 and total observations of	10	CO2
	20.		

Q 7	A square membrane (2.5 cm \times 2.5 cm) is under tension of 200 dynes/cm and is executing vibration with (4,3) normal modes. Calculate its velocity and frequency if the membrane has areal density of 0.02 g/cm ² .	10	CO4
Q 8	Show that, $\int_0^\infty e^{-x^4} x^2 dx \times \int_0^\infty \frac{e^{-x^2}}{\sqrt{x}} dx = \frac{\pi}{4\sqrt{2}}$ [Consider: $\left\lceil \left(\frac{3}{4}\right) \right\rceil \left(\frac{1}{4}\right) = \pi\sqrt{2}$]	10	CO3
Q 9	Solve, $\frac{d^2y}{dx^2} + xy = 0$ OR Solve, $(x^2 + 1)\frac{d^2y}{dx^2} + x\frac{dy}{dx} - xy = 0$	10	CO1
	SECTION C (2Qx20M=40 Marks)		
Q 10	(a) Solve 1D vibrating string to find out V (x, t).(b) Show that deflection of a vibrating string of length π fixed at both	15	
	ends takes the form, $V(x,t)=\lambda$ (cost sinx $-\cos 2t \sin 2x$) [Consider initial deflection, $F(x)=\lambda(\sin x-\sin 2x)$, $v^2=1$ and initial velocity $=0$]	5	CO3
Q 11	Derive the general solution for Laplace equation in cylindrical coordinates system. \mathbf{OR} Solve steady state heat flow equation to find out temperature distribution, T (x, y) at any point P (x, y) . Assume, plate is finite (length, a) along x and infinite (∞) along y.	20	CO2