Name:

Enrolment No:

UPES End Semester Examination, May 2024 Course : THERMAL PHYSICS Semester : II : BSc PHYSICS (H) Time : 03 hrs. Program **Course Code: PHYS1033** Max. Marks: 100 **Instructions:** • All questions are compulsory (Q9 and Q11 have an internal choice). Use of scientific calculator is allowed. **SECTION A** (50x4M=20Marks) S. No. Marks CO Q 1 A quantity of dry air at 30 °C is compressed suddenly to 1/4 of its volume. 4 **CO1** Find the change in temperature assuming γ to be 1.4 for dry air. Q 2 Explain "Thermodynamical Scale of Temperature". 4 **CO1** Q 3 Show that the slope of adiabatic curve through a point in a PV graph is γ 4 **CO1** times the slope of the isothermal curve through the same point. Q4 What is Clausius inequality and give its physical interpretation. 4 **CO2** Q 5 Explain "enthalpy". Show that for an isobaric process where, the symbols have their usual meanings: 4 **CO2** $C_p = \left(\frac{\partial h}{\partial T}\right)_p$ and $h_f - h_i = H$ **SECTION B** (4Qx10M= 40 Marks) Q 6 Efficiency of a Carnot's cycle changes from 1/7 to 1/4 when source 10 **CO1** temperature is raised by 200 K. Calculate the temperature of the sink.

Q 7	Explain second order phase transition and hence obtain the Ehrenfest's relations (the symbols have their usual meanings): $\frac{dP}{dT} = \frac{\alpha_2 - \alpha_1}{K_2 - K_1}$ $\frac{dP}{dT} = \frac{CP_2 - CP_1}{VT(\alpha_2 - \alpha_1)}$	10	CO2
Q 8	Derive the four Maxwell's thermodynamical relations.	10	CO3
Q 9	Explain the porous-plug experiment for the production of low temperatures. Show that enthalpy remains constant and find the general expression of the Joule Thomson coefficient.		
	OR	10	COA
	Illustrate and elucidate the five isotherms observed in Andrew's experiment on a PV diagram corresponding to temperatures of 13.1°C, 21.5°C, 31.1°C, 35.5°C, and 48.1°C. Additionally, mark and explain the "border curve" and the "critical point" on the same plot.	10	CO4
	SECTION-C		
	(2Qx20M=40 Marks)		
Q 10	(a) Using Maxwell's thermodynamical relations show that (the symbols have their usual meanings):		
	$C_{\rm p} = C_{\rm v} + T \left(\frac{\partial P}{\partial T}\right)_{\rm v} \left(\frac{\partial V}{\partial T}\right)_{\rm P}$ (b) And hence show that for a Van der Waal gas:	20 (10+10)	CO3
	$C_{p} - C_{v} = R \left[1 + \frac{2a}{VRT} \right]$		
Q 11	 (a) Describe the setup and operation of the Zartman and Ko experiment used to confirm Maxwell's Boltzmann distribution law for molecular velocities. 		CO4
	(b) For a gas molecule at 35 °C temperature and three atmospheric pressure, determine the mean free path. You are given that the molecular diameter of the gas is 5 x 10 ⁻⁸ cm, 1 atmospheric pressure		

= 101325 N/m ² and Boltzmann constant = 1.38 x 10 ⁻²³ Joules per Kelvin.	
OR	20 (10+10)
(a) Derive an expression for the coefficient of viscosity utilizing the mean free path expression $\left(\lambda = \frac{1}{\sqrt{2}\pi\sigma^2 n}\right)$.	
(b) You are given that for a gas the critical temperature and pressure of are 40 °C and 80 atmospheres, respectively. Assuming that the gas obeys Van der Waal's equation determine the critical volume and radius of the gas molecules (given: $R = 82.07 \text{ cm}^3 \text{ Atm K}^{-1}$, Avogadro's number = 6.022 x 10 ²³ mole ⁻¹ and gram molecular volume = 22400 cm ³).	