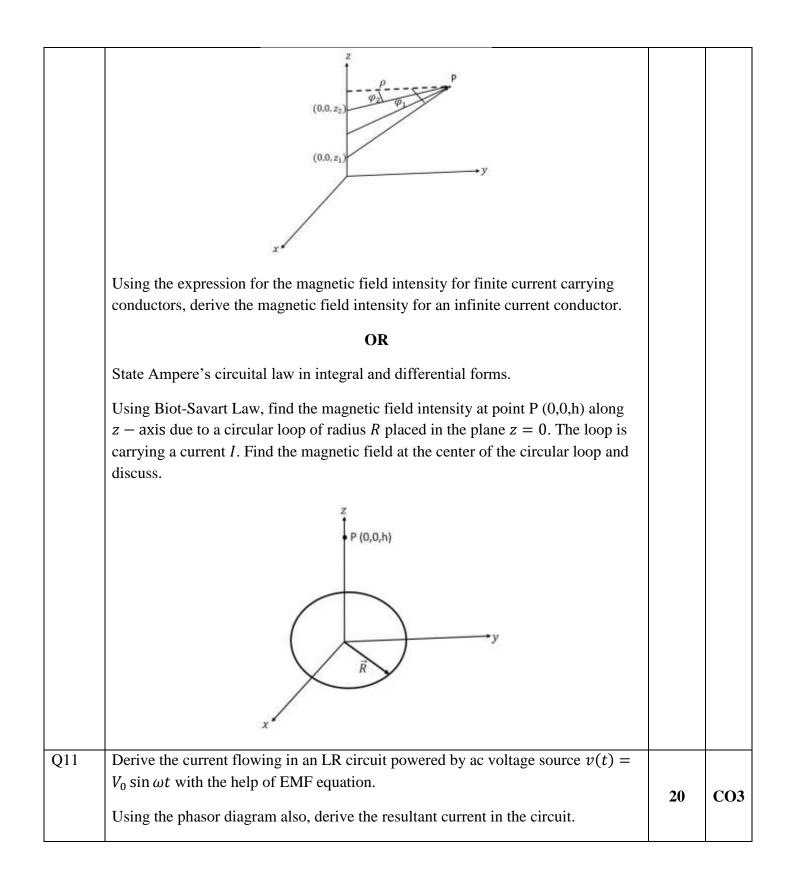
Name:

**Enrolment No:** 



## UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May 2024

Course: Electricity & Magnetism Program: BSc (H) Physics by Research Course Code: PHYS 1013 Semester: II Time : 03 hrs. Max. Marks: 100


## **Instructions:**

- There are 3 Sections such as Section A, B & C.
- Section A is compulsory, however, Section B & Section C have internal choices.
- Scientific calculator is allowed

## SECTION A (5Qx4M=20Marks)

| S. No. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Mark<br>s | СО  |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----|
| Q1     | If the electric flux density $(\vec{D})$ is given as<br>$\vec{D} = \frac{2 \cos \theta}{r^3} \hat{r} + \frac{\sin \theta}{r^3} \hat{\theta} \text{ C/m}^2$<br>Find the charge density. The divergence of a vector field in spherical coordinates is<br>given as:<br>$\vec{\nabla} \cdot \vec{A} = \frac{1}{r^2} \frac{\partial}{\partial r} (r^2 A_r) + \frac{1}{r \sin \theta} \frac{\partial}{\partial \theta} (A_\theta \sin \theta) + \frac{1}{r \sin \theta} \frac{\partial A_\varphi}{\partial \varphi}$ | 4         | CO1 |
| Q2     | Differentiate between diamagnetic and paramagnetic materials.                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4         | CO2 |
| Q3     | Discuss briefly the concept of resonance in an LC circuit.                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4         | CO1 |
| Q4     | For a magnetized material, considering magnetic flux density as $\vec{B} = \mu_0(\vec{H} + \vec{M})$ , prove                                                                                                                                                                                                                                                                                                                                                                                                   |           |     |
|        | $ec{B} = \mu_0 \mu_r ec{H}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4         | CO2 |
|        | where $\vec{H}$ , $\vec{M}$ and $\mu_r$ are magnetic field intensity, magnetization vector and relative permeability, respectively.                                                                                                                                                                                                                                                                                                                                                                            |           |     |
| Q5     | Using the concept of electromagnetic induction, find an expression for transformer EMF in integral form.                                                                                                                                                                                                                                                                                                                                                                                                       | 4         | CO2 |
|        | SECTION B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -         |     |
|        | (4Qx10M= 40 Marks)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           | 1   |
| Q6     | What is a phasor diagram?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10        | CO3 |

|     | Using phasor algebra, find out the following for an LR circuit with an external                                                                                                                                                                                                                                             |    |     |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----|
|     | voltage source $v(t) = 10 \sin 10^6 t$ :                                                                                                                                                                                                                                                                                    |    |     |
|     | • Impedance of the circuit                                                                                                                                                                                                                                                                                                  |    |     |
|     | • The current flowing in the circuit $(i(t))$ .                                                                                                                                                                                                                                                                             |    |     |
|     | Prepare a plot of $i(t)$ Vs $\omega t$ considering $R = 10$ ohms and $L = 0.2$ henry.                                                                                                                                                                                                                                       |    |     |
| Q7  | What are the characteristics of an ideal solenoid?                                                                                                                                                                                                                                                                          |    |     |
|     | Considering a solenoid of length $l$ , total number of turns as $N$ , and current flowing in the solenoid as $l$ , derive the magnetic field at the center of the solenoid. If the solenoid is kept in a medium having permeability as $\mu_m$ , find the magnetic flux density due to the solenoid                         | 10 | CO2 |
| Q8  | Explain Norton's theorem for solving electrical circuits. Using Norton's theorem, find the current through the $6\Omega$ resistor in the given circuit below:                                                                                                                                                               |    |     |
|     |                                                                                                                                                                                                                                                                                                                             | 10 | CO3 |
|     | 15 V (+) 8 Ω \$ \$6 Ω                                                                                                                                                                                                                                                                                                       |    |     |
| Q9  | In a coaxial solenoid of length $l$ , a current $i_2$ is flowing in the outer solenoid of radius $r_2$ and number of turns $N_2$ . The inner solenoid of radius $r_1$ , number of turns $N_1$ carries a current $i_1$ . Find the mutual inductance of both the coils and prove that reciprocity theorem holds in this case. | 10 | CO2 |
|     | OR                                                                                                                                                                                                                                                                                                                          |    |     |
|     | Discuss the significance of displacement current density in electromagnetics.<br>Derive an expression for it and show how it completes Ampere's law.                                                                                                                                                                        |    |     |
|     | SECTION-C<br>(2Qx20M=40 Marks)                                                                                                                                                                                                                                                                                              |    |     |
| Q10 | A finite conductor carrying a current <i>I</i> is placed along $z - axis$ . The length of the conductor is $l = z_2 - z_1$ , where $(0,0, z_1)$ and $(0,0, z_2)$ are the coordinates of                                                                                                                                     |    |     |
|     | bottom and top most points of the conductor, respectively (see the figure below).                                                                                                                                                                                                                                           |    |     |
|     | Prove that the magnetic field intensity at any point P in space is given as:                                                                                                                                                                                                                                                |    |     |
|     | $\vec{H} = \frac{I}{2\pi\rho} (\sin\varphi_1 - \sin\varphi_2)\hat{\varphi}$                                                                                                                                                                                                                                                 | 20 | CO4 |
|     | The symbols are shown in the given diagram; $\varphi_1, \varphi_2$ are the angular positions of bottom and top most points of the finite conductor w.r.t. $\rho$ , where $\rho$ is radial coordinate.                                                                                                                       |    |     |

