Name:

Course

Enrolment No:

Max. Marks: 100

UPES

End Semester Examination May – 2024

: Antimicrobial Drug Resistance and Drug Development

Semester : VI

Program : Integrated B.Sc.-MSc Microbiology

Duration : 3 Hours

Course Code : HSMB3025P

Instructions : All questions are compulsory

S. No.	Section A	Marks	COs
	Short answer questions/ MCO/T&F		
	$(20Q \times 1.5M = 30 \text{ Marks})$		
Q1	State full form of ESBL.	1.5	CO1
Q2	Define MIC.	1.5	CO1
Q3	State what are CRE's.	1.5	CO1
Q4	State names of regulatory authorities to grant permission for	1.5	CO2
	investigation of new drugs in India.		
Q5	Define Docking.	1.5	CO3
Q6	Mention the four main types of receptors.	1.5	CO2
Q7	Identify the likely combinations that may contribute to the	1.5	CO1
	development of a super-infection:		
	a) long-term use of narrow-spectrum antimicrobials		
	b) long-term use of broad-spectrum antimicrobials		
	c) short-term use of narrow-spectrum antimicrobials		
	d) short-term use of broad-spectrum antimicrobials		
Q8	The following term refers to the ability of an antimicrobial drug to	1.5	CO2
	harm the target microbe without harming the host:		
	a) mode of action		
	b) therapeutic level		
	c) spectrum of activity		
	d) selective toxicity		
Q9	Which of the following is not a type of β -lactam antimicrobial?	1.5	CO1
	a) Penicillins		
	b) Glycopeptides		
	c) Cephalosporins		
	d) Monobactams		

Q10	One of the following does not bind to the 50S ribosomal subunit:	1.5	CO2
	a) Tetracyclines		
	b) Lincosamides		
	c) Macrolides		
	d) Chloramphenicol		
Q11	State which of the following antimicrobials inhibits the activity of	1.5	CO2
	DNA gyrase?		
	a) Polymyxin B		
	b) Clindamycin		
	c) Nalidixic acid		
	d) Rifampin		
Q12	is not an appropriate target for antifungal drugs?	1.5	CO2
	a) ergosterol		
	b) chitin		
	c) cholesterol		
	d) $\beta(1 \rightarrow 3)$ glucan		
Q13	One of the following resistance mechanisms describes the function	1.5	CO3
	of β-lactamase?		
	a) Efflux pump		
	b) Target mimicry		
	c) Drug inactivation		
	d) Target overproduction		
Q14	The following technique cannot be used to determine the minimum	1.5	CO3
	inhibitory concentration of an antimicrobial drug against a particular		
	microbe:		
	a) Etest		
	b) microbroth dilution test		
	c) Kirby-Bauer disk diffusion test		
	d) Microbroth dilution test		
Q15	The following has yielded compounds with the most antimicrobial	1.5	CO2
	activity?		
	a) water		
	b) air		
	c) volcanoes		
	d) soil		
Q16	Comment on the below statement:	1.5	CO1
	"If you are 'colonized' with bacteria, does that mean you have an		
Q17	State True or False:	1.5	CO1
0.10	"Do not take antibiotics for viral infections"		
Q18	The father of Chemotherapy was	1.5	CO1

Q19	Define Systemic toxicity and give example of an antimicrobial drug	1.5	CO2		
	which can cause systemic toxicity.				
Q20	State the core purpose of Antibiotic Stewardship.	1.5	CO3		
Section B					
	(4Qx5M=20 Marks)				
Q1	Explain the concept of natural and acquired resistance with	5	CO1		
	examples.				
Q2	Discuss the concept of One Health.	5	CO3		
Q3	Describe the different ways for lead identification of drugs.	5	CO2		
Q4	State the purpose of CADD. Explain the difference between ligand	5	CO3		
	based drug-design and structure based design.				
Section C					
(2Qx15M=30 Marks)					
Q1	Discuss the steps involved during development of new drug.	15	CO3		
Q2	Describe in details different methods of antimicrobial susceptibility	15	CO1		
	testing.				
Section D					
(2Qx10M=20 Marks)					
Q1	Explain various factors for rising incidences of global AMR.	10	CO1		
Q2	Describe the characetristics of an ideal drug candidate.	10	CO2		