Name:

Enrolment No:

UPES End Semester Examination, May 2024

Course: Synthetic Biology

Program: Int BMSC Microbiology

Course Code: HSMB3018

Max. Marks: 100

Instructions: Attempt all the questions

S. No.	Section A	Marks	COs
	Short answer questions/ MCO/T&F		
	(20Qx1.5M=30 Marks)		
Q 1	Define synthetic promoters.	1.5	CO1
Q 2	Name two other technologies besides CRISPR-Cas used for genome editing.	1.5	CO1
Q 3	What are the challenges in effectively treating human diseases using genome editing technologies?	1.5	C01
Q 4	Name one advantage of using Golden Gate cloning for DNA fragment construction.	1.5	CO2
Q 5	Name one chemical reagent commonly used for DNA delivery in synthetic biology.	1.5	CO2
Q 6	Define biosensor construction.	1.5	CO3
Q 7	Name one application of biosensors.	1.5	CO3
Q 8	What are the components of a biosensor?	1.5	CO4
Q 9	Name one challenge associated with biosensor development.	1.5	CO4
Q 10	 Which of the following methods is used for designing and constructing DNA fragments in synthetic biology? a) PCR b) Western blotting c) Gibson assembly d) Gel electrophoresis 	1.5	CO4
Q 11	 Golden Gate cloning is primarily used for: a) Amplifying DNA fragments b) Protein purification c) Cloning DNA fragments d) DNA sequencing 	1.5	CO2
Q 12	 Which of the following is a method for DNA delivery in synthetic biology? a) PCR b) DNA microarray 	1.5	CO2

Semester: 6

Duration: 3 Hours

	c) Viruses		
	d) ELISA		
Q 13	What role do chemical reagents play in synthetic biology?	1.5	CO1
	a) Amplifying DNA fragments		
	b) Delivering DNA		
	c) Analyzing DNA sequences		
	d) Enhancing protein expression		
Q 14	Gibson assembly is best described as:	1.5	CO1
	a) A method for constructing DNA fragments		
	b) A method for protein purification		
	c) A technique for PCR amplification		
0.1	d) A method for DNA sequencing		~~~
Q 15	Biosensors are primarily used for:	1.5	CO2
	a) DNA sequencing		
	b) Environmental monitoring		
	c) Protein purification		
0.1(d) Cell culture	1.5	003
Q 16	what are the components of a biosensor?	1.5	02
	a) Antibodies and PCK princes		
	a) Detector and microarray		
	d) Col electrophorosis enperatus		
0.17	d) Get electrophotesis apparatus Biosensors contribute significantly to which field?	15	CO3
Ų1/	a) Robotics	1.5	003
	a) Robolics b) Agriculture		
	c) Nanotechnology		
	d) Medical diagnostics		
0 18	How do biosensors function?	1.5	CO4
x = 0	a) By amplifying DNA sequences		001
	b) By detecting biomolecules and converting them into measurable		
	signals		
	c) By separating proteins in a gel		
	d) By analyzing RNA expression levels		
Q 19	What is a common application of biosensors?	1.5	CO4
	a) Gene editing		
	b) Food testing		
	c) Cell culture		
	d) Immunofluorescence		
Q 20	The main principle behind biosensor operation involves:	1.5	CO2
	a) Protein folding		
	b) Signal amplification		
	c) Specific biomolecule detection		
	a) DNA replication		
	Section B (40x5M=20 Marks)		
01	Explain the concept of synthetic transcription factors.	5	CO4
02	How are synthetic RNA regulations engineered?	5	CO4
03	Describe the mechanism of protein regulation.	5	CO3
04	What is CRISPR-Cas, and how has it revolutionized genome	5	<u>CO3</u>
× '	editing?	·	
1	0.		1

Section C						
(2Qx15M=30 Marks)						
Q 1	What are Gibson assembly and Golden Gate cloning, and how are	15	CO2			
	they used in the design and construction of DNA fragments?					
Q 2	Explain the significance of genome engineering in synthetic	15	CO1			
	biology, and how are advanced methods employed in this field.					
Section D						
(2Qx10M=20 Marks)						
Q 1	Discuss the advantages and limitations of using viruses for DNA	10	CO1			
	delivery in synthetic biology research.					
Q 2	Describe the components of a biosensor and their respective	10	CO2			
	functions.					